Simple $C^ *$-algebras with continuous scales and simple corona algebras
Author:
Hua Xin Lin
Journal:
Proc. Amer. Math. Soc. 112 (1991), 871-880
MSC:
Primary 46L05
DOI:
https://doi.org/10.1090/S0002-9939-1991-1079711-8
MathSciNet review:
1079711
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: It is shown that the corona algebra $M\left ( A \right )/A$ of a separable simple ${C^ * }$-algebra $A$ is simple if and only if $A$ has a continuous scale or $A$ is elementary. It is also shown that simple ${C^ * }$-algebras with continuous scales are algebraically simple.
- Charles A. Akemann and Frederic W. Shultz, Perfect $C^\ast $-algebras, Mem. Amer. Math. Soc. 55 (1985), no. 326, xiii+117. MR 787540, DOI https://doi.org/10.1090/memo/0326
- Bruce E. Blackadar, Traces on simple AF $C^{\ast } $-algebras, J. Functional Analysis 38 (1980), no. 2, 156β168. MR 587906, DOI https://doi.org/10.1016/0022-1236%2880%2990062-2
- Bruce E. Blackadar and Joachim Cuntz, The structure of stable algebraically simple $C^{\ast } $-algebras, Amer. J. Math. 104 (1982), no. 4, 813β822. MR 667536, DOI https://doi.org/10.2307/2374206
- Lawrence G. Brown, Stable isomorphism of hereditary subalgebras of $C^ *$-algebras, Pacific J. Math. 71 (1977), no. 2, 335β348. MR 454645
- Joachim Cuntz, The structure of multiplication and addition in simple $C^ *$-algebras, Math. Scand. 40 (1977), no. 2, 215β233. MR 500176, DOI https://doi.org/10.7146/math.scand.a-11691
- Joachim Cuntz, Dimension functions on simple $C^ *$-algebras, Math. Ann. 233 (1978), no. 2, 145β153. MR 467332, DOI https://doi.org/10.1007/BF01421922 ---, The internal structure of simple ${C^ * }$-algebras, Operator algebras and Applications, Proc. Symp. Pure Math. 38, pt. 1, Amer. Math. Soc., Providence, 1981, pp. 85-115.
- George A. Elliott, Derivations of matroid $C^{\ast } $-algebras. II, Ann. of Math. (2) 100 (1974), 407β422. MR 352999, DOI https://doi.org/10.2307/1971079
- George A. Elliott, The ideal structure of the multiplier algebra of an AF algebra, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 5, 225β230. MR 910159
- Hua Xin Lin, Fundamental approximate identities and quasi-multipliers of simple $AF\;C^*$-algebras, J. Funct. Anal. 79 (1988), no. 1, 32β43. MR 950082, DOI https://doi.org/10.1016/0022-1236%2888%2990028-6
- Hua Xin Lin, Ideals of multiplier algebras of simple AF $C^*$-algebras, Proc. Amer. Math. Soc. 104 (1988), no. 1, 239β244. MR 958075, DOI https://doi.org/10.1090/S0002-9939-1988-0958075-1 ---, The multipliers and quasi-multipliers of simple ${C^ * }$-algebras, preprint.
- Hua Xin Lin, The simplicity of the quotient algebra $M(A)/A$ of a simple $C^*$-algebra, Math. Scand. 65 (1989), no. 1, 119β128. MR 1051828, DOI https://doi.org/10.7146/math.scand.a-12270 H. Lin and S. Zhang, On infinite simple ${C^ * }$-algebras, preprint.
- Gert K. Pedersen, $C^{\ast } $-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006 M. RΓΈrdam, Ideals in the multiplier algebra of a stable ${C^ * }$-algebra, preprint.
- Shuang Zhang, A Riesz decomposition property and ideal structure of multiplier algebras, J. Operator Theory 24 (1990), no. 2, 209β225. MR 1150618
- Shuang Zhang, On the structure of projections and ideals of corona algebras, Canad. J. Math. 41 (1989), no. 4, 721β742. MR 1012625, DOI https://doi.org/10.4153/CJM-1989-033-4 ---, ${C^ * }$-algebras with real rank zero and internal structure of their corona and multiplier algebras (I), preprint.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L05
Retrieve articles in all journals with MSC: 46L05
Additional Information
Keywords:
Simple corona algebras,
continuous scales,
multipliers
Article copyright:
© Copyright 1991
American Mathematical Society