## Simple $C^ *$-algebras with continuous scales and simple corona algebras

HTML articles powered by AMS MathViewer

- by Hua Xin Lin PDF
- Proc. Amer. Math. Soc.
**112**(1991), 871-880 Request permission

## Abstract:

It is shown that the corona algebra $M\left ( A \right )/A$ of a separable simple ${C^ * }$-algebra $A$ is simple if and only if $A$ has a continuous scale or $A$ is elementary. It is also shown that simple ${C^ * }$-algebras with continuous scales are algebraically simple.## References

- Charles A. Akemann and Frederic W. Shultz,
*Perfect $C^\ast$-algebras*, Mem. Amer. Math. Soc.**55**(1985), no.Β 326, xiii+117. MR**787540**, DOI 10.1090/memo/0326 - Bruce E. Blackadar,
*Traces on simple AF $C^{\ast }$-algebras*, J. Functional Analysis**38**(1980), no.Β 2, 156β168. MR**587906**, DOI 10.1016/0022-1236(80)90062-2 - Bruce E. Blackadar and Joachim Cuntz,
*The structure of stable algebraically simple $C^{\ast }$-algebras*, Amer. J. Math.**104**(1982), no.Β 4, 813β822. MR**667536**, DOI 10.2307/2374206 - Lawrence G. Brown,
*Stable isomorphism of hereditary subalgebras of $C^*$-algebras*, Pacific J. Math.**71**(1977), no.Β 2, 335β348. MR**454645**, DOI 10.2140/pjm.1977.71.335 - Joachim Cuntz,
*The structure of multiplication and addition in simple $C^*$-algebras*, Math. Scand.**40**(1977), no.Β 2, 215β233. MR**500176**, DOI 10.7146/math.scand.a-11691 - Joachim Cuntz,
*Dimension functions on simple $C^*$-algebras*, Math. Ann.**233**(1978), no.Β 2, 145β153. MR**467332**, DOI 10.1007/BF01421922
β, - George A. Elliott,
*Derivations of matroid $C^{\ast }$-algebras. II*, Ann. of Math. (2)**100**(1974), 407β422. MR**352999**, DOI 10.2307/1971079 - George A. Elliott,
*The ideal structure of the multiplier algebra of an AF algebra*, C. R. Math. Rep. Acad. Sci. Canada**9**(1987), no.Β 5, 225β230. MR**910159** - Hua Xin Lin,
*Fundamental approximate identities and quasi-multipliers of simple $AF\;C^*$-algebras*, J. Funct. Anal.**79**(1988), no.Β 1, 32β43. MR**950082**, DOI 10.1016/0022-1236(88)90028-6 - Hua Xin Lin,
*Ideals of multiplier algebras of simple AF $C^*$-algebras*, Proc. Amer. Math. Soc.**104**(1988), no.Β 1, 239β244. MR**958075**, DOI 10.1090/S0002-9939-1988-0958075-1
β, - Hua Xin Lin,
*The simplicity of the quotient algebra $M(A)/A$ of a simple $C^*$-algebra*, Math. Scand.**65**(1989), no.Β 1, 119β128. MR**1051828**, DOI 10.7146/math.scand.a-12270
H. Lin and S. Zhang, - Gert K. Pedersen,
*$C^{\ast }$-algebras and their automorphism groups*, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR**548006**
M. RΓΈrdam, - Shuang Zhang,
*A Riesz decomposition property and ideal structure of multiplier algebras*, J. Operator Theory**24**(1990), no.Β 2, 209β225. MR**1150618** - Shuang Zhang,
*On the structure of projections and ideals of corona algebras*, Canad. J. Math.**41**(1989), no.Β 4, 721β742. MR**1012625**, DOI 10.4153/CJM-1989-033-4
β, ${C^ * }$

*The internal structure of simple*${C^ * }$

*-algebras*, Operator algebras and Applications, Proc. Symp. Pure Math. 38, pt. 1, Amer. Math. Soc., Providence, 1981, pp. 85-115.

*The multipliers and quasi-multipliers of simple*${C^ * }$

*-algebras*, preprint.

*On infinite simple*${C^ * }$

*-algebras*, preprint.

*Ideals in the multiplier algebra of a stable*${C^ * }$

*-algebra*, preprint.

*-algebras with real rank zero and internal structure of their corona and multiplier algebras*(I), preprint.

## Additional Information

- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**112**(1991), 871-880 - MSC: Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1991-1079711-8
- MathSciNet review: 1079711