Linear independence of iterates of entire functions
HTML articles powered by AMS MathViewer
- by Luis Bernal González
- Proc. Amer. Math. Soc. 112 (1991), 1033-1036
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045136-4
- PDF | Request permission
Abstract:
We prove the following result: The set $\left \{ {{h_n}:n = 0,1, \ldots } \right \}$ is a linearly independent sequence of entire functions, where ${h_0} = 1,{h_1} = {g_{1,}}{h_2} = {g_1} \circ {g_2},{h_3} = {g_1} \circ {g_2} \circ {g_3}, \ldots ,{g_1}$ is a nonconstant entire function and ${g_n}(n \geq 2)$ are entire functions which are not polynomials of degree $\leq 1$. Our theorem generalizes a previous one about linear independence of iterates.References
- Jens Peter Reus Christensen and Pal Fischer, Linear independence of iterates and entire solutions of functional equations, Proc. Amer. Math. Soc. 103 (1988), no. 4, 1120–1124. MR 954993, DOI 10.1090/S0002-9939-1988-0954993-9
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- A. S. B. Holland, Introduction to the theory of entire functions, Pure and Applied Mathematics, Vol. 56, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1973. MR 0447572
- J. E. Littlewood, Lectures on the Theory of Functions, Oxford University Press, 1944. MR 0012121 G. Pólya, On an integral function of an integral function, J. London Math. Soc. 1 (1926), 12-15.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 1033-1036
- MSC: Primary 30D05
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045136-4
- MathSciNet review: 1045136