Fonctions qui opérent sur les espaces de Besov
HTML articles powered by AMS MathViewer
- by Gérard Bourdaud and Dalila Kateb
- Proc. Amer. Math. Soc. 112 (1991), 1067-1076
- DOI: https://doi.org/10.1090/S0002-9939-1991-1055766-1
- PDF | Request permission
Abstract:
On caractérise les fonctions qui opèrent, par composition à gauche, sur l’espace de Besov $B_{p,q}^s({\mathbb {R}^n})$ et sur l’espace de Triebel-Lizorkin $F_{p,q}^s({\mathbb {R}^n})$,pour $0 < s < 1{\text {et}}s \ne n/p$. Ce sont les fonctions, s’annulant en zéro, lipschitziennes (pour $s < n/p$) ou localement lipschitziennes (pour $s > n/p$).References
- G. Bourdaud, Thèse d’état, Orsay, 1983.
- G. Bourdaud and D. Kateb, Calcul fonctionnel dans certains espaces de Besov, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 1, 153–162 (French, with English summary). MR 1056779, DOI 10.5802/aif.1208
- Björn E. J. Dahlberg, A note on Sobolev spaces, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 183–185. MR 545257
- Satoru Igari, Sur les fonctions qui opèrent sur l’espace $\hat A^{2}$, Ann. Inst. Fourier (Grenoble) 15 (1965), no. fasc. 2, 525–536 (French). MR 188716, DOI 10.5802/aif.221 S. Janson, On functions with derivates in ${H^1}$, Uppsala Univ. Dept. Math. Report 16 (1987).
- Moshe Marcus and Victor J. Mizel, Complete characterization of functions which act, via superposition, on Sobolev spaces, Trans. Amer. Math. Soc. 251 (1979), 187–218. MR 531975, DOI 10.1090/S0002-9947-1979-0531975-1
- H. Triebel, Theory of function spaces, Mathematik und ihre Anwendungen in Physik und Technik [Mathematics and its Applications in Physics and Technology], vol. 38, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1983. MR 730762, DOI 10.1007/978-3-0346-0416-1
- Hans Triebel, On the spaces $F^{s}_{p,q}$ of Hardy-Sobolev type: equivalent quasinorms, multipliers, spaces on domains, regular elliptic boundary value problems, Comm. Partial Differential Equations 5 (1980), no. 3, 245–291. MR 562544, DOI 10.1080/03605308008820140
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 1067-1076
- MSC: Primary 46E35
- DOI: https://doi.org/10.1090/S0002-9939-1991-1055766-1
- MathSciNet review: 1055766