Around the relative center property in orthomodular lattices
HTML articles powered by AMS MathViewer
- by G. Chevalier
- Proc. Amer. Math. Soc. 112 (1991), 935-948
- DOI: https://doi.org/10.1090/S0002-9939-1991-1055767-3
- PDF | Request permission
Abstract:
The paper deals with the relative center property in orthomodular lattices (OMLs). The property holds in a large class of OMLs, including locally modular OMLs and projection lattices of ${{\text {AW}}^*}$- and ${{\text {W}}^*}$-algebras, and it means that the center of any interval $[0,a]$ is the set $\{ a \wedge c|c\;{\text {central}}\;{\text {in}}\;L\}$. In §l we study the congruence lattice of an OML satisfying the Axiom of Comparability (A.C.) and, in §2, we prove that the central cover of an element can be expressed in many different ways in OMLs satisfying a certain condition (C). For complete OMLs, Axiom (A.C.) and condition (C) are equivalent to the relative center property. In §3, we give a coordinatization theorem for complete OMLs with the relative center property.References
- Donald H. Adams, Equational classes of Foulis semigroups and orthomodular lattices, Proceedings of the University of Houston Lattice Theory Conference (Houston, Tex., 1973) Dept. Math., Univ. Houston, Houston, Tex., 1973, pp. 486–497. MR 0392721
- Sterling K. Berberian, Baer *-rings, Die Grundlehren der mathematischen Wissenschaften, Band 195, Springer-Verlag, New York-Berlin, 1972. MR 0429975
- S. K. Berberian, Equivalence and perspectivity in Baer rings, J. Algebra 87 (1984), no. 2, 380–388. MR 739941, DOI 10.1016/0021-8693(84)90144-3 —, Baer rings and Baer $^*$-rings, 1988. (This paper is an unpublished English version of Anneaux et $^*$-anneaux de Baer, Université de Poitiers (1982).)
- I. Chajda and B. Zelinka, Every finite chain is the tolerance lattice of some lattice, Glas. Mat. Ser. III 20(40) (1985), no. 1, 3–6 (English, with Serbo-Croatian summary). MR 818608
- Georges Chevalier, Relations binaires et congruences dans un treillis orthomodulaire, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 19, 785–788 (French, with English summary). MR 711831
- Georges Chevalier, Les congruences d’un treillis orthomodulaire de projections, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 15, 731–734 (French, with English summary). MR 772081
- Georges Chevalier, Commutators and decompositions of orthomodular lattices, Order 6 (1989), no. 2, 181–194. MR 1031654, DOI 10.1007/BF02034335
- D. J. Foulis, Relative inverses in Baer *-semigroups, Michigan Math. J. 10 (1963), 65–84. MR 154939
- D. J. Foulis, Semigroups co-ordinatizing orthomodular geometries, Canadian J. Math. 17 (1965), 40–51. MR 204331, DOI 10.4153/CJM-1965-005-4
- Richard Greechie and Louis Herman, Commutator-finite orthomodular lattices, Order 1 (1985), no. 3, 277–284. MR 779393, DOI 10.1007/BF00383604
- M. F. Janowitz, Separation conditions in relatively complemented lattices, Colloq. Math. 22 (1970), 25–34. MR 280419, DOI 10.4064/cm-22-1-25-34
- Gudrun Kalmbach, Orthomodular lattices, London Mathematical Society Monographs, vol. 18, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1983. MR 716496
- Irving Kaplansky, Rings of operators, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0244778
- Yukiyosi Kawada, Kaneo Higuti, and Yatarô Matusima, Bemerkungen zur vorangehenden Arbeit von Herrn T. Iwamura, Jpn. J. Math. 19 (1944), 73–79 (German). MR 16558, DOI 10.4099/jjm1924.19.1_{7}3
- Shûichirô Maeda, On the lattice of projections of a Baer $^*$-ring, J. Sci. Hiroshima Univ. Ser. A 22 (1958), 75–88 (1958). MR 105378
- Shûichirô Maeda, On $^{\ast }$-rings satisfying the square root axiom, Proc. Amer. Math. Soc. 52 (1975), 188–190. MR 371941, DOI 10.1090/S0002-9939-1975-0371941-4
- Shuichiro Maeda and Samuel S. Holland Jr., Equivalence of projections in Baer $^*$-rings, J. Algebra 39 (1976), no. 1, 150–159. MR 404319, DOI 10.1016/0021-8693(76)90067-3
- Yosinao Misonou, On a weakly central operator algebra, Tohoku Math. J. (2) 4 (1952), 194–202. MR 52044, DOI 10.2748/tmj/1178245422
- Usa Sasaki, Lattices of projections in $AW^*$-algebras, J. Sci. Hiroshima Univ. Ser. A 19 (1955), 1–30. MR 80641
- Dietmar Schweigert, Compatible relations of modular and orthomodular lattices, Proc. Amer. Math. Soc. 81 (1981), no. 3, 462–464. MR 597663, DOI 10.1090/S0002-9939-1981-0597663-5
- David M. Topping, Jordan algebras of self-adjoint operators, Mem. Amer. Math. Soc. 53 (1965), 48. MR 190788
- Fred B. Wright, A reduction for algebras of finite type, Ann. of Math. (2) 60 (1954), 560—570. MR 65037, DOI 10.2307/1969851
- Fred B. Wright, The ideals in a factor, Ann. of Math. (2) 68 (1958), 475–483. MR 100555, DOI 10.2307/1970152
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 935-948
- MSC: Primary 06C15; Secondary 46K99, 46L99
- DOI: https://doi.org/10.1090/S0002-9939-1991-1055767-3
- MathSciNet review: 1055767