On $r$-separated sets in normed spaces
HTML articles powered by AMS MathViewer
- by Juan Arias-de-Reyna
- Proc. Amer. Math. Soc. 112 (1991), 1087-1094
- DOI: https://doi.org/10.1090/S0002-9939-1991-1059622-4
- PDF | Request permission
Abstract:
The separation of a bounded set $A$ in a metric space $\delta (A)$ is defined as the supremum of the numbers $r > 0$ such that there exists a sequence $({x_n})$ in $A$ such that $d({x_n},{x_m}) > r$ for every $n \ne m$. We prove for every bounded set $A$ in a Banach space that $\delta (A) = \delta ({\text {co}}(A))$ where ${\text {co}}(A)$ denotes the convex hull of $A$. This yields a generalization of Darbo’s fixed point theorem.References
- Józef Banaś and Kazimierz Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, vol. 60, Marcel Dekker, Inc., New York, 1980. MR 591679
- Gabriele Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84–92 (Italian). MR 70164
- Tomás Domínguez Benavides, Some properties of the set and ball measures of noncompactness and applications, J. London Math. Soc. (2) 34 (1986), no. 1, 120–128. MR 859153, DOI 10.1112/jlms/s2-34.1.120
- Tomás Domínguez Benavides, Set-contractions and ball-contractions in some classes of spaces, J. Math. Anal. Appl. 136 (1988), no. 1, 131–140. MR 972589, DOI 10.1016/0022-247X(88)90121-7
- T. Domínguez Benavides and G. López Acedo, Fixed points of asymptotically contractive mappings, J. Math. Anal. Appl. 164 (1992), no. 2, 447–452. MR 1151046, DOI 10.1016/0022-247X(92)90126-X
- J. Elton and E. Odell, The unit ball of every infinite-dimensional normed linear space contains a $(1+\varepsilon )$-separated sequence, Colloq. Math. 44 (1981), no. 1, 105–109. MR 633103, DOI 10.4064/cm-44-1-105-109
- D. H. Fremlin and M. Talagrand, Subgraphs of random graphs, Trans. Amer. Math. Soc. 291 (1985), no. 2, 551–582. MR 800252, DOI 10.1090/S0002-9947-1985-0800252-6
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- Clifford A. Kottman, Packing and reflexivity in Banach spaces, Trans. Amer. Math. Soc. 150 (1970), 565–576. MR 265918, DOI 10.1090/S0002-9947-1970-0265918-7 K. Kuratowski, Sur les espaces complets, Fund. Math. 15 (1930), 301-309.
- Paul Massatt, Some properties of condensing maps, Ann. Mat. Pura Appl. (4) 125 (1980), 101–115. MR 605205, DOI 10.1007/BF01789408 B. N. Sadovskiĭ, On a fixed point principle, Funktsional Anal, i Prilozhen 4 (1967), 74-76.
- J. H. Wells and L. R. Williams, Embeddings and extensions in analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 84, Springer-Verlag, New York-Heidelberg, 1975. MR 0461107, DOI 10.1007/978-3-642-66037-5
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 1087-1094
- MSC: Primary 46B20; Secondary 47H09, 47H10
- DOI: https://doi.org/10.1090/S0002-9939-1991-1059622-4
- MathSciNet review: 1059622