A second category set with only first category functions
Author:
P. Komjáth
Journal:
Proc. Amer. Math. Soc. 112 (1991), 1129-1136
MSC:
Primary 03E35; Secondary 03E15
DOI:
https://doi.org/10.1090/S0002-9939-1991-1065086-7
MathSciNet review:
1065086
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: If the existence of a measurable cardinal is consistent then it is consistent in that there is a second category set such that every
function, as a subset of
, is of first category. Some other connected results are also proved.
- [1] William Boos, Lectures on large cardinal axioms, ⊨ ISILC Logic Conference (Proc. Internat. Summer Inst. and Logic Colloq., Kiel, 1974) Springer, Berlin, 1975, pp. 25–88. Lecture Notes in Math., Vol. 499. MR 0414364
- [2] Hans-Dieter Donder, Regularity of ultrafilters and the core model, Israel J. Math. 63 (1988), no. 3, 289–322. MR 969944, https://doi.org/10.1007/BF02778036
- [3] P. Erdős, Set-theoretic, measure-theoretic, combinatorial, and number-theoretic problems concerning point sets in Euclidean space, Real Anal. Exchange 4 (1978/79), no. 2, 113–138. MR 533932
- [4] P. Erdős and P. Komjáth, Countable decompositions of 𝑅² and 𝑅³, Discrete Comput. Geom. 5 (1990), no. 4, 325–331. MR 1043714, https://doi.org/10.1007/BF02187793
- [5] Thomas Jech, Set theory, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. Pure and Applied Mathematics. MR 506523
- [6] P. Komjáth, On second-category sets, Proc. Amer. Math. Soc. 107 (1989), no. 3, 653–654. MR 976358, https://doi.org/10.1090/S0002-9939-1989-0976358-7
- [7] Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR 597342
- [8] Kenneth Kunen, Saturated ideals, J. Symbolic Logic 43 (1978), no. 1, 65–76. MR 495118, https://doi.org/10.2307/2271949
- [9] Menachem Magidor, On the existence of nonregular ultrafilters and the cardinality of ultrapowers, Trans. Amer. Math. Soc. 249 (1979), no. 1, 97–111. MR 526312, https://doi.org/10.1090/S0002-9947-1979-0526312-2
- [10] W. Sierpiński, Sur un théorème équivalent à l'hypothèse du continu, Bull. Acad. Polon. Lett. Sér. A (1919), 1-3.
- [11] J. C. Simms, Sierpinśki's theorem (to appear).
- [12] St. Ulam, Über gewisse Zerlegungen von Mengen, Fund. Math. 20 (1933), 221-223.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03E35, 03E15
Retrieve articles in all journals with MSC: 03E35, 03E15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1991-1065086-7
Article copyright:
© Copyright 1991
American Mathematical Society