Separation and von Neumann intersection theorems
HTML articles powered by AMS MathViewer
- by Shiow Yu Chang
- Proc. Amer. Math. Soc. 112 (1991), 1149-1152
- DOI: https://doi.org/10.1090/S0002-9939-1991-1070512-3
- PDF | Request permission
Abstract:
We give some separation theorems to extend the intersection theorem of von Neumann, Fan, and others, omitting hypotheses of convexity and local convexity for one of the coordinate spaces.References
- Ky. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121–126. MR 47317, DOI 10.1073/pnas.38.2.121
- I. L. Glicksberg, A further generalization of the Kakutani fixed theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170–174. MR 46638, DOI 10.1090/S0002-9939-1952-0046638-5
- Chung Wei Ha, Minimax and fixed point theorems, Math. Ann. 248 (1980), no. 1, 73–77. MR 569411, DOI 10.1007/BF01349255 S. Kukutani, A generalization of Brouwer’s fixed point theorem, Duke Math. J. 7 (1941), 457-459.
- J. v. Neumann, Zur Theorie der Gesellschaftsspiele, Math. Ann. 100 (1928), no. 1, 295–320 (German). MR 1512486, DOI 10.1007/BF01448847 —, Uber ein okonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes, Ergeb. eines Math. 8 (1937), 73-83.
- Nicholas C. Yannelis and N. D. Prabhakar, Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econom. 12 (1983), no. 3, 233–245. MR 743037, DOI 10.1016/0304-4068(83)90041-1
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 1149-1152
- MSC: Primary 54H25; Secondary 49J35, 90D05
- DOI: https://doi.org/10.1090/S0002-9939-1991-1070512-3
- MathSciNet review: 1070512