On a conjecture of Tarski on products of cardinals
Authors:
Thomas Jech and Saharon Shelah
Journal:
Proc. Amer. Math. Soc. 112 (1991), 1117-1124
MSC:
Primary 03E10; Secondary 03E35
DOI:
https://doi.org/10.1090/S0002-9939-1991-1070525-1
MathSciNet review:
1070525
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We look at an old conjecture of A. Tarski on cardinal arithmetic and show that if a counterexample exists, then there exists one of length .
- [GH] Fred Galvin and András Hajnal, Inequalities for cardinal powers, Ann. of Math. (2) 101 (1975), 491–498. MR 376359, https://doi.org/10.2307/1970936
- [M] Menachem Magidor, On the singular cardinals problem. I, Israel J. Math. 28 (1977), no. 1-2, 1–31. MR 491183, https://doi.org/10.1007/BF02759779
- [ShA2] Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955
- [Sh345] Saharon Shelah, Products of regular cardinals and cardinal invariants of products of Boolean algebras, Israel J. Math. 70 (1990), no. 2, 129–187. MR 1070264, https://doi.org/10.1007/BF02807866
- [Sh355]
-,
has a Jonsson algebra, preprint.
- [T] A. Tarski, Quelques théorèmes sur les alephs, Fund. Math. 7 (1925), 1-14.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03E10, 03E35
Retrieve articles in all journals with MSC: 03E10, 03E35
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1991-1070525-1
Keywords:
Cardinal arithmetic,
singular cardinals problem,
Article copyright:
© Copyright 1991
American Mathematical Society