A note on continuous mappings and the property of J. L. Kelley
HTML articles powered by AMS MathViewer
- by Hisao Kato
- Proc. Amer. Math. Soc. 112 (1991), 1143-1148
- DOI: https://doi.org/10.1090/S0002-9939-1991-1073527-4
- PDF | Request permission
Abstract:
In this paper, it is proved that if $X$ is a continuum and $\omega$ is any Whitney map for $C(X)$, then the following are equivalent: (1) $X$ has property [K]. (2) There exists a (continuous) mapping $F:X \times I \times [0,\omega (X)] \to C(X)$ such that $F(\{ x\} \times I \times \{ t\} ) = \{ A \in {\omega ^{ - 1}}(t)|x \in A\}$ for each $x \in X$ and $t \in [0,\omega (X)]$, where $I = [0,1]$. (3) For each $t \in [0,\omega (X)]$, there is an onto map $f:X \times I \to {\omega ^{ - 1}}(t)$ such that $f(\{ x\} \times I) = \{ A \in {\omega ^{ - 1}}(t)|x \in A\}$ for each $x \in X$. Some corollaries are obtained also.References
- Włodzimierz J. Charatonik, Hyperspaces and the property of Kelley, Bull. Acad. Polon. Sci. Sér. Sci. Math. 30 (1982), no. 9-10, 457–459 (1983) (English, with Russian summary). MR 703573
- D. W. Curtis, Application of a selection theorem to hyperspace contractibility, Canad. J. Math. 37 (1985), no. 4, 747–759. MR 801425, DOI 10.4153/CJM-1985-040-7
- Lawrence Fearnley, Characterizations of the continuous images of the pseudo-arc, Trans. Amer. Math. Soc. 111 (1964), 380–399. MR 163293, DOI 10.1090/S0002-9947-1964-0163293-7
- Steve Ferry, Strongly regular mappings with compact $\textrm {ANR}$ fibers are Hurewicz fiberings, Pacific J. Math. 75 (1978), no. 2, 373–382. MR 506197
- Hisao Kato, On the property of Kelley in the hyperspace and Whitney continua, Topology Appl. 30 (1988), no. 2, 165–174. MR 967753, DOI 10.1016/0166-8641(88)90015-6
- J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22–36. MR 6505, DOI 10.1090/S0002-9947-1942-0006505-8
- J. Krasinkiewicz, On the hyperspaces of snake-like and circle-like continua, Fund. Math. 83 (1974), no. 2, 155–164. MR 418058, DOI 10.4064/fm-83-2-155-164
- PawełKrupski, The property of Kelley in circularly chainable and in chainable continua, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), no. 7-8, 377–381 (English, with Russian summary). MR 640332
- Włodzimierz Kuperberg, Uniformly pathwise connected continua, Studies in topology (Proc. Conf., Univ. North Carolina, Charlotte, N.C., 1974; dedicated to Math. Sect. Polish Acad. Sci.), Academic Press, New York, 1975, pp. 315–324. MR 0362254
- A. Lelek, On weakly chainable continua, Fund. Math. 51 (1962/63), 271–282. MR 143182, DOI 10.4064/fm-51-3-271-282
- Wayne Lewis, Continuum theory problems, Proceedings of the 1983 topology conference (Houston, Tex., 1983), 1983, pp. 361–394. MR 765091 S. B. Nadler, Jr., Some basic connectivity properties of Whitney map inverses in $C(X)$, Studies in Topology, Academic Press, New York, 1975, pp. 393-410.
- Sam B. Nadler Jr., Hyperspaces of sets, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49, Marcel Dekker, Inc., New York-Basel, 1978. A text with research questions. MR 0500811
- Roger W. Wardle, On a property of J. L. Kelley, Houston J. Math. 3 (1977), no. 2, 291–299. MR 458379 H. Whitney, Regular families of curves. I, Proc. Nat. Acad. Sci. U.S.A. 18 (1932), 275-278.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 1143-1148
- MSC: Primary 54B20; Secondary 54C05, 54C60, 54C65
- DOI: https://doi.org/10.1090/S0002-9939-1991-1073527-4
- MathSciNet review: 1073527