Topological equivalence of real binary forms
HTML articles powered by AMS MathViewer
- by David Weinberg and Dave Witte
- Proc. Amer. Math. Soc. 112 (1991), 1157-1162
- DOI: https://doi.org/10.1090/S0002-9939-1991-1086344-6
- PDF | Request permission
Abstract:
Necessary and sufficient conditions are given for two real binary homogeneous polynomials to be equivalent under a continuous change of variables, and for the forms to be equivalent under a continuous change of variables that is differentiable (or that is real-analytic) away from the origin.References
- E. B. Elliott, An introduction to the algebra of quantics, 2nd ed., Oxford Univ. Press, Oxford, 1913.
- G. B. Gurevich, Foundations of the theory of algebraic invariants, P. Noordhoff Ltd., Groningen, 1964. Translated by J. R. M. Radok and A. J. M. Spencer. MR 0183733 J. H. Grace and A. Young, The algebra of invariants, Cambridge Univ. Press, Cambridge, 1903.
- Saunders Mac Lane and Garrett Birkhoff, Algebra, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1967. MR 0214415
- David A. Weinberg, Canonical forms for symmetric tensors, Linear Algebra Appl. 57 (1984), 271–282. MR 729277, DOI 10.1016/0024-3795(84)90192-7
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 1157-1162
- MSC: Primary 12D05; Secondary 13A50, 14D25, 57S25
- DOI: https://doi.org/10.1090/S0002-9939-1991-1086344-6
- MathSciNet review: 1086344