## Oscillations in neutral equations with periodic coefficients

HTML articles powered by AMS MathViewer

- by G. Ladas, Ch. G. Philos and Y. G. Sficas
- Proc. Amer. Math. Soc.
**113**(1991), 123-134 - DOI: https://doi.org/10.1090/S0002-9939-1991-1045596-9
- PDF | Request permission

## Abstract:

We obtain a necessary and sufficient condition for the oscillation of all solutions of the neutral delay differential equation: (1) \[ \tfrac {d}{{dt}}[x(t) + px(t - \tau )] + Q(t)x(t - \sigma ) = 0,\] where $p \in {\mathbf {R}},Q \in C[[0,\infty ),{{\mathbf {R}}^ + }],Q$ is $\omega$-periodic with $\omega > 0,Q(t)[unk]0$ for $t \geqq 0$, and there exist positive integers ${n_1}$ and ${n_2}$ such that $\tau = {n_1}\omega$ and $\sigma = {n_2}\omega$. More precisely we show that every solution of (1) oscillates if and only if every solution of an associated neutral equation with constant coefficients oscillates.## References

- Q. Chuanxi and G. Ladas,
*Oscillations of neutral differential equations with variable coefficients*, Appl. Anal.**32**(1989), no. 3-4, 215–228. MR**1030096**, DOI 10.1080/00036818908839850 - M. K. Grammatikopoulos, E. A. Grove, and G. Ladas,
*Oscillations of first-order neutral delay differential equations*, J. Math. Anal. Appl.**120**(1986), no. 2, 510–520. MR**864767**, DOI 10.1016/0022-247X(86)90172-1 - M. K. Grammatikopoulos, G. Ladas, and Y. G. Sficas,
*Oscillation and asymptotic behavior of neutral equations with variable coefficients*, Rad. Mat.**2**(1986), no. 2, 279–303 (English, with Serbo-Croatian summary). MR**873703** - M. K. Grammatikopoulos, Y. G. Sficas, and I. P. Stavroulakis,
*Necessary and sufficient conditions for oscillations of neutral equations with several coefficients*, J. Differential Equations**76**(1988), no. 2, 294–311. MR**969427**, DOI 10.1016/0022-0396(88)90077-0 - E. A. Grove, G. Ladas, and A. Meimaridou,
*A necessary and sufficient condition for the oscillation of neutral equations*, J. Math. Anal. Appl.**126**(1987), no. 2, 341–354. MR**900752**, DOI 10.1016/0022-247X(87)90045-X - R. G. Koplatadze and T. A. Chanturiya,
*Oscillating and monotone solutions of first-order differential equations with deviating argument*, Differentsial′nye Uravneniya**18**(1982), no. 8, 1463–1465, 1472 (Russian). MR**671174** - Gerasimos Ladas,
*Sharp conditions for oscillations caused by delays*, Applicable Anal.**9**(1979), no. 2, 93–98. MR**539534**, DOI 10.1080/00036817908839256 - G. Ladas and Y. G. Sficas,
*Oscillations of neutral delay differential equations*, Canad. Math. Bull.**29**(1986), no. 4, 438–445. MR**860851**, DOI 10.4153/CMB-1986-069-2 - G. Ladas, Y. G. Sficas, and I. P. Stavroulakis,
*Necessary and sufficient conditions for oscillations*, Amer. Math. Monthly**90**(1983), no. 9, 637–640. MR**719755**, DOI 10.2307/2323283
—, - Ch. G. Philos,
*On the existence of nonoscillatory solutions tending to zero at $\infty$ for differential equations with positive delays*, Arch. Math. (Basel)**36**(1981), no. 2, 168–178. MR**619435**, DOI 10.1007/BF01223686 - Y. G. Sficas and I. P. Stavroulakis,
*Necessary and sufficient conditions for oscillations of neutral differential equations*, J. Math. Anal. Appl.**123**(1987), no. 2, 494–507. MR**883704**, DOI 10.1016/0022-247X(87)90326-X

*Necessary and sufficient conditions for oscillations of higher order delay differential equations*, Trans. Amer. Math. Soc.

**285**(1984), 81-90.

## Bibliographic Information

- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**113**(1991), 123-134 - MSC: Primary 34K15; Secondary 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045596-9
- MathSciNet review: 1045596