DISTRIBUTIVE LATTICES HAVING \(n \)-PERMUTABLE CONGRUENCES

M. E. ADAMS AND R. BEAZER

(Communicated by Louis J. Ratliff, Jr.)

Abstract. Distributive lattices having \(n \)-permutable congruences are characterized by the property that they have no \(n \)-element chain in their poset of prime ideals.

1. Introduction

During the course of investigations into various congruence properties of distributive lattices, \(p \)-algebras, double \(p \)-algebras, and de Morgan algebras in [1, 2, 5], we are led to consider, for integers \(n \) with \(1 \leq n \leq 4 \), the class \(\mathcal{D}_n \) of all distributive lattices having no \((n+1) \)-element chain in their poset of prime ideals. In [2], the members of \(\mathcal{D}_n \), for any \(n \geq 1 \), are characterized by a sentence in the first-order theory of distributive lattices (see Proposition 3.1). \(\mathcal{D}_n \) contains the lattice reducts of the members of several important varieties of algebras arising in the study of many-valued logics; including the variety of Lukasiewicz algebras of order \(n + 1 \) and the variety \(\mathcal{L}_{n+1} \) of \(L \)-algebras generated by the \((n+1) \)-element chain algebra (see [3, 4]). Earlier research shows that those distributive lattices, \(p \)-algebras, and double \(p \)-algebras having permutable congruences are precisely the ones whose lattice reduct belongs to \(\mathcal{D}_1, \mathcal{D}_2, \) and \(\mathcal{D}_3 \), respectively (see [2, 5]). Furthermore, those distributive lattices, \(p \)-algebras, double \(p \)-algebras, and de Morgan algebras whose compact congruences are all principal are precisely the ones whose lattice reduct belongs to \(\mathcal{D}_2, \mathcal{D}_3, \mathcal{D}_4, \) and \(\mathcal{D}_4 \), respectively (see [1, 2, 5]). It is natural to ask if the members of \(\mathcal{D}_n \) can be characterized by some property of their congruences. In this note we answer this question affirmatively by showing that \(\mathcal{D}_n \) is the class of all distributive lattices having \((n+1) \)-permutable congruences.

2. Preliminaries

Henceforth, \(n \) will denote an arbitrary integer \(\geq 1 \). If \(\theta, \psi \) are binary relations on a set \(L \) then \(\theta \circ \psi \) will denote their relational product and \(\theta \circ^n \psi \) will stand for the compound relational product \(\theta \circ \psi \circ \theta \circ \cdots \), involving \(n \) factors, starting with \(\theta \) and thereafter alternating between \(\theta \) and \(\psi \). In the event that
n \geq 2 \text{ and } \theta \circ^n \psi = \psi \circ^n \theta \text{ we will say that } \theta \text{ and } \psi \text{ n-permute (or are n-permutable). If } \theta \text{ and } \psi \text{ 2-permute we will simply say that they permute (or are permutable). An algebra is said to have n-permutable congruences if every pair of congruences on it n-permute.}

If \(L \) is a lattice \(a, b, c, d \in L \), \(b \leq a \) and \(d \leq c \) then we will indicate that the quotient \(a/b \) is perspective to the quotient \(c/d \) by writing \(a/b \sim c/d \) and denote by \(\theta(a, b) \) the principal congruence on \(L \) collapsing \(a/b \).

For all other notation and terminology, we refer the reader to [6].

3. The class \(\mathbb{D}_n \)

The following was proved in [2]:

Proposition 3.1. A distributive lattice \(L \) belongs to \(\mathbb{D}_n \) iff, given any \(x_i \in L \) with \(0 \leq i \leq n+1 \) and \(x_0 \leq x_1 \leq \cdots \leq x_{n+1} \), there exist \(x'_i \in L \) for \(1 \leq i \leq n \) such that

\[
x_0 = x_1 \land x'_1, \quad x_i \lor x'_i = x_{i+1} \land x'_{i+1}
\]

when \(1 \leq i < n \) and \(x_n \lor x'_n = x_{n+1} \).

In order to pave the way for our new characterization of the members of \(\mathbb{D}_n \) we first prove the following:

Lemma 3.2. Congruences \(\theta \) and \(\psi \) of a lattice \((n+1)\)-permute iff the binary relations \(\theta \cap \leq \) and \(\psi \cap \leq \) \((n+1)\)-permute.

Proof. Throughout, let

\[
\alpha = \begin{cases}
\theta, & \text{if } n \text{ is even} \\
\psi, & \text{if } n \text{ is odd}
\end{cases} \quad \text{and} \quad \alpha' = \{ \theta, \psi \} \setminus \{ \alpha \}.
\]

Suppose that \(\theta \) and \(\psi \) \((n+1)\)-permute and let \((x, y) \in (\theta \cap \leq) \circ^{n+1} (\psi \cap \leq) \). Then there exist \(x_i \in L \), \(1 \leq i \leq n \), such that \(x \leq x_1 \leq \cdots \leq x_n \leq y \) and \(x \equiv x_1(\theta) \), \(x_1 \equiv x_2(\psi) \), \(\ldots \), \(x_n \equiv y(\alpha) \). Therefore there exist \(x_i' \in L \), \(1 \leq i \leq n \), such that

\[
x \equiv x'_1(\psi), \quad x'_1 \equiv x'_2(\theta), \quad \ldots \quad x'_n \equiv y(\alpha').
\]

For \(1 \leq i \leq n \), define \(\bar{x}_i \in [x, y] \) by \(\bar{x}_i = x \lor (x'_i \land y) \). Clearly, \(x \equiv \bar{x}_1(\psi) \), \(\bar{x}_1 \equiv \bar{x}_2(\theta) \), \(\ldots \), \(\bar{x}_n \equiv y(\alpha') \). Now define elements \(X'_i \in L \), for \(1 \leq i \leq n \), by \(X'_1 = \bar{x}_1 \) and \(X'_{k+1} = X'_k \lor \bar{x}_{k+1} \) whenever \(1 \leq k < n \). Clearly

\[
x \leq X'_1 \leq X'_2 \leq \cdots \leq X'_n \leq y
\]

and \(x \equiv X'_1(\psi), \quad X'_1 \equiv X'_2(\theta), \quad \ldots \quad X'_n \equiv y(\alpha') \). Therefore \((x, y) \in (\psi \cap \leq) \circ^{n+1} (\theta \cap \leq) \). Similarly, \((y \cap \leq) \circ^{n+1} (\theta \cap \leq) \subseteq (\theta \cap \leq) \circ^{n+1} (\psi \cap \leq) \).

Suppose now that \(\theta \cap \leq \) and \(\psi \cap \leq \) \((n+1)\)-permute. Let \((x, y) \in \theta \circ^{n+1} \psi \). Then there exist \(x_i \in L \), \(1 \leq i \leq n \), such that \(x \equiv x_1(\theta) \), \(x_1 \equiv x_2(\psi) \), \(\ldots \), \(x_n \equiv y(\alpha) \). Define elements \(X'_i \in L \), \(1 \leq i \leq n \), by \(X'_1 = x \lor x_1 \) and \(X'_{k+1} = X'_k \lor x_{k+1} \) whenever \(1 \leq k < n \), and let \(Y = X'_n \lor y \). Clearly,

\[
x \leq X_1 \leq X_2 \leq \cdots \leq X_n \leq Y
\]
and \(x \equiv X_1(\theta), \ldots, X_n \equiv Y(\alpha) \); in other words, \((x, Y) \in (\theta \cap \leq) \circ^{n+1} (\psi \cap \leq)\). Therefore \((x, Y) \in (\psi \cap \leq) \circ^{n+1} (\theta \cap \leq)\) and so there exist \(x_i' \in L, 1 \leq i \leq n\), such that

\[
x \leq x_1' \leq x_2' \leq \cdots \leq x_n' \leq Y
\]

and \(x \equiv x_1'(\psi), \ldots, x_n' \equiv Y(\alpha) \). Now define elements \(Y_1 \in L, 1 \leq i \leq n\), by \(Y_1 = x_n \cup y \) and \(Y_{k+1} = x_{n-k} \cup Y_k \) whenever \(1 \leq k < n\). Observe that \(Y = x \cup Y_n \),

\[
y \leq Y_1 \leq Y_2 \leq \cdots \leq Y_n \leq Y
\]

and \(y \equiv Y_1(\alpha), \ldots, Y_{n-1} \equiv Y_n(\psi), Y \equiv Y(\theta) \). Therefore there exist \(y_i' \in L, 1 \leq i \leq n\), such that

\[
y \leq y_1' \leq \cdots \leq y_{n-1}' \leq y_n' \leq Y
\]

and

\[
y \equiv y_1'(\alpha), \ldots, y_{n-1}' \equiv y_n'(\theta), y_n' \equiv Y(\psi).
\]

Now,

\[
x = x \wedge Y \equiv x_1' \wedge y_n'(\psi),
\]

\[
x_1' \wedge y_n' \equiv x_2' \wedge y_{n-1}'(\theta),
\]

\[
x_2' \wedge y_{n-1}' \equiv x_3' \wedge y_{n-2}'(\psi),
\]

\[
\vdots
\]

\[
x_{n-1}' \wedge y_2' \equiv x_n' \wedge y_1'(\alpha), \quad \text{and}
\]

\[
x_n' \wedge y_1' \equiv Y \wedge y(\alpha') = y.
\]

Thus \((x, y) \in \psi \circ^{n+1} \theta\). Similarly, we can show that \(\psi \circ^{n+1} \theta \leq \theta \circ^{n+1} \psi \) and so \(\theta \) and \(\psi \) \((n+1)\)-permute. \(\square \)

A well-known consequence of Proposition 3.1 is that a distributive lattice belongs to \(\mathcal{D}_1 \) iff it is relatively complemented. It is also known that a distributive lattice has permutable congruences iff it is relatively complemented. This yields the case where \(n = 1 \) in the following:

Theorem 3.3. Let \(L \) be a distributive lattice. Then \(L \in \mathcal{D}_n \) iff it has \((n+1)\)-permutable congruences.

Proof. Suppose that \(n \geq 2 \) and \(L \in \mathcal{D}_n \). Let \(\theta, \psi \) be congruences of \(L \) and \((x, y) \in (\theta \cap \leq) \circ^{n+1} (\psi \cap \leq)\). For the sake of notational convenience, let us suppose that \(n \) is odd. Then there exist \(x_i \in L \) for \(1 \leq i \leq n \) such that

\[
x = x_0 \leq x_1 \leq \cdots \leq x_n \leq x_{n+1} = y
\]

and

\[
x_0 \equiv x_1(\theta), \ldots, x_n \equiv x_{n+1}(\psi).
\]

By Proposition 3.1, there are \(x_i' \in L \) for \(1 \leq i \leq n \) such that \(x = x_0 = x_i \wedge x_i' \), \(x_i \vee x_i' = x_{i+1} \wedge x_i' \), for \(1 \leq i \leq n \), and \(x_n \vee x_n' = x_{n+1} = y \). Let us write
\(z_0 = x \) and \(z_i = x_i \vee x'_i \) when \(1 \leq i \leq n \). Observe that \(z_i/x_i \sim x'_i/x_i \) and \(x_{n-1} \equiv x_n(\theta) \), so that \(x \equiv x'_n(\psi) \), and furthermore, \(x_n/z_{n-1} \sim y/x_n' \) and \(z_{n-1} \equiv x_{n-1}(\theta) \), so that \(x'_n \equiv y(\theta) \). Suppose now that \(i \) is odd and \(3 \leq i \leq n \).

Then \(x_{i-1}/z_{i-2} \sim z_{i-1}/x_{i-1} \) and \(z_{i-2} \equiv x_{i-1}(\psi) \) so that \(x_{i-1}' \equiv z_{i-1}(\psi) \), and furthermore \(z_{i}/x_{i} \sim x_{i}'/z_{i-1} \) and \(x_{i} \equiv z_{i}(\psi) \) so that \(z_{i-1} \equiv x_{i}(\psi) \). Therefore \(x_{i-1}' \equiv x_{i}(\psi) \). It follows that

\[
\begin{align*}
x \equiv x'_1(\psi), & \quad x'_2 \equiv x'_2(\psi), & \quad \ldots, & \quad x'_{n-1} \equiv x'_{n}(\psi).
\end{align*}
\]

In the event that \(i \) is even and \(2 \leq i \leq n - 1 \), a similar argument yields \(x_{i-1}' \equiv x_{i}(\theta) \). Consequently,

\[
\begin{align*}
x'_1 \equiv x'_2(\theta), & \quad x'_3 \equiv x'_4(\theta), & \quad \ldots, & \quad x'_{n} \equiv y(\theta).
\end{align*}
\]

Thus, \((x, y) \in (\psi \land \leq) \circ^{n+1} (\theta \land \leq)\) under the assumption that \(n \) is odd. The case where \(n \) is even is dealt with similarly and so, for any \(n \geq 2 \) and arbitrary congruences \(\theta, \psi \) on \(L \), \((\theta \land \leq) \circ^{n+1} (\psi \land \leq) \subseteq (\psi \land \leq) \circ^{n+1} (\theta \land \leq)\). Therefore, by Lemma 3.2, \(L \) has \((n + 1)\)-permutable congruences.

Suppose now that \(L \) has \((n + 1)\)-permutable congruences. For \(0 \leq i \leq n + 1 \), let \(x_i \in L \) satisfy \(x_0 \leq x_1 \leq \cdots \leq x_n \leq x_{n+1} \). Initially, let us suppose that \(n \) is odd and so \(n = 2k + 1 \), for some \(k \geq 1 \). Define congruences \(\theta \) and \(\psi \) of \(L \) by

\[
\theta = \bigvee_{i=0}^{k} \theta(x_{2i}, x_{2i+1}) \quad \text{and} \quad \psi = \bigvee_{j=0}^{k} \theta(x_{2j+1}, x_{2j+2}).
\]

First, observe that \(\theta \land \psi = \bigvee_{i,j=0}^{k} \theta(x_{2i}, x_{2i+1}) \land \theta(x_{2j+1}, x_{2j+2}) \), since the congruence lattice of \(L \) is distributive, that \(x_{2i} \leq x_{2i+1} \leq x_{2j+1} \leq x_{2j+2} \) when \(i \leq j \), and that \(x_{2j+1} \leq x_{2j+2} \leq x_{2i} \) when \(i > j \). However, it is easy to see, using the well-known description of principal congruences of distributive lattices, that if \(a, b, c, d \in L \) and \(a \leq b \leq c \leq d \) then \(\theta(a, b) \land \theta(c, d) = \omega \).

Therefore \(\theta \land \psi = \omega \). Now, \(x_0 \equiv x_1(\theta), \ x_1 \equiv x_2(\psi), \ldots, \ x_n \equiv x_{n+1}(\psi) \) and so there exist \(x'_i \in L \), for \(1 \leq i \leq n \), such that

\[
\begin{align*}
x_0 \leq x'_1 \leq \cdots \leq x'_n \leq x_{n+1}
\end{align*}
\]

and \(x_0 \equiv x'_1(\psi), \ x'_1 \equiv x'_2(\theta), \ldots, \ x'_n \equiv x_{n+1}(\theta) \), by Lemma 3.2. Let us define, for \(1 \leq i \leq n \),

\[
X'_i = (x_{i-1} \lor x'_i) \land x_{i+1}
\]

and note that \(X'_i \in [x_{i-1}, x_{i+1}] \).

We claim that \(x_1 \land X'_1 = x_0 \). Indeed, \(x_1 \land X'_1 = x_1 \land (x_0 \lor x'_1 \land x_2) = (x_0 \lor x'_1) \land x_1 = x'_1 \land x_1 \) so that \(x'_1 \land X'_1 \equiv x'_1 \land x_0(\theta) = x_0 \) and \(x_1 \land X'_1 \equiv x_0 \land x_1(\psi) = x_0 \).

Therefore \(x_1 \land X'_1 \equiv x_0(\theta \land \psi) \) and so \(x_1 \land X'_1 = x_0 \).

Next we show that \(x_n \lor X'_n = x_{n+1} \). Indeed, \(x_n \lor X'_n = x_n \lor [(x_{n-1} \lor x'_n) \land x_{n+1}] = x_n \lor x'_n \) so \(x_n \lor X'_n \equiv x_{n+1} \lor x'_n(\psi) = x_{n+1} \) and \(x_n \lor X'_n \equiv x_n \lor x_{n+1}(\theta) = x_{n+1} \). Therefore \(x_n \lor X'_n \equiv x_{n+1}(\theta \land \psi) \) and so \(x_n \lor X'_n = x_{n+1} \).

It remains to show that \(x_i \lor X'_i = x_{i+1} \lor X'_{i+1} \), for \(1 \leq i < n \). Observe that, for \(1 \leq i < n \), \(x_i \lor X'_i = x_i \lor [(x_{i-1} \lor x'_i) \land x_{i+1}] = (x_i \lor x'_i) \land x_{i+1} \).
and suppose that \(i\) is odd. Then \(x_i \equiv x'_{i+1}(\psi)\) and \(x_i \equiv x'_{i+1}(\theta)\). Therefore,
\[x_i \land x'_{i+1} \equiv (x_i \land x'_{i+1}) \land x_{i+1}(\theta) = x_{i+1} \land [(x_i \land x'_{i+1}) \land x_{i+2}] = x_{i+1} \land x'_{i+1};\]
that is, \(x_i \lor x'_{i+1} = x_{i+1} \land x'_{i+1}(\theta)\). Furthermore, \(x_i \lor x'_{i+1} \equiv (x_i \lor x'_{i+1}) \land x_{i+1}(\psi) = x_{i+1}\) and \(x_{i+1} \land x'_{i+1} = x_{i+1} \land [(x_i \lor x_{i+1}) \land x_{i+2}] = x_{i+1} \land (x_{i+1} \lor x'_{i+1})(\psi) = x_{i+1}\), so \(x_i \lor x'_{i+1} = x_{i+1} \land x'_{i+1}(\psi)\). Therefore, \(x_i \lor x'_{i+1} \equiv x_{i+1} \land x'_{i+1}(\theta \land \psi)\) and so \(x_i \lor x'_{i+1} = x_{i+1} \land x'_{i+1}\). When \(i\) is even and \(1 \leq i < n\) we have \(x_i \equiv x_{i+1}(\theta)\) and \(x_i' \equiv x'_{i+1}(\psi)\) and an argument similar to the one where \(i\) is odd also yields \(x_i \lor x'_{i+1} = x_{i+1} \land x'_{i+1}(\theta \land \psi)\). Thus, \(x_i \lor x'_{i+1} = x_{i+1} \land x'_{i+1}\), for any \(i\) with \(1 \leq i < n\).

In the event that \(n\) is even, so that \(n = 2k\) for some \(k \geq 1\), we define
\[
\theta = \bigvee_{i=0}^{k} \theta(x_{2i}, x_{2i+1}) \quad \text{and} \quad \psi = \bigvee_{j=1}^{k} \theta(x_{2j-1}, x_{2j}).
\]

Again we can show that \(\theta \land \psi = \omega\), proceeding in a manner similar to that for which \(n\) is odd and draw the same conclusions. In any case, \(L \in \mathcal{D}_n\) by Proposition 3.1.

Corollary 3.4. The length of the poset of prime ideals of a distributive lattice is \(n\) iff \(L\) has \((n+2)\)-permutable but not \((n+1)\)-permutable congruences.

Corollary 3.5. Every compact congruence of a distributive lattice is principal iff it has 3-permutable congruences.

References

Department of Mathematics, State University of New York, New Paltz, New York 12561

Department of Mathematics, University of Glasgow, Glasgow, Scotland G12 8QW