Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The super GAGA principle and families of super Riemann surfaces
HTML articles powered by AMS MathViewer

by Pankaj Topiwala and Jeffrey M. Rabin
Proc. Amer. Math. Soc. 113 (1991), 11-20
DOI: https://doi.org/10.1090/S0002-9939-1991-1057963-8

Abstract:

We extend the GAGA principle, the Kodaira embedding theorem, and Chow’s lemma to supergeometry and conclude that families of super Riemann surfaces are locally algebraic.
References
    P. Deligne, Letter to Manin, Princeton, October 1987.
  • Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
  • Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
  • Claude LeBrun, Yat Sun Poon, and R. O. Wells Jr., Projective embeddings of complex supermanifolds, Comm. Math. Phys. 126 (1990), no. 3, 433–452. MR 1032867
  • Claude LeBrun and Mitchell Rothstein, Moduli of super Riemann surfaces, Comm. Math. Phys. 117 (1988), no. 1, 159–176. MR 946998
  • Yu. I. Manin, New dimensions in geometry, Uspekhi Mat. Nauk 39 (1984), no. 6(240), 47–73 (Russian). MR 771098
  • Yuri I. Manin, Gauge field theory and complex geometry, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 289, Springer-Verlag, Berlin, 1988. Translated from the Russian by N. Koblitz and J. R. King. MR 954833
  • J. Rabin and P. Topiwala, Super Riemann surfaces are algebraic curves, Univ. California, San Diego, preprint, 1988.
  • Jean-Pierre Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197–278 (French). MR 68874, DOI 10.2307/1969915
  • —, Géometrie algébrique et géometrie analytique, Ann. Inst. Fourier (Grenoble) 6 (1956), 1-42.
Similar Articles
Bibliographic Information
  • © Copyright 1991 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 113 (1991), 11-20
  • MSC: Primary 14M30; Secondary 14H10, 32C11, 58A50
  • DOI: https://doi.org/10.1090/S0002-9939-1991-1057963-8
  • MathSciNet review: 1057963