The super GAGA principle and families of super Riemann surfaces
HTML articles powered by AMS MathViewer
- by Pankaj Topiwala and Jeffrey M. Rabin
- Proc. Amer. Math. Soc. 113 (1991), 11-20
- DOI: https://doi.org/10.1090/S0002-9939-1991-1057963-8
- PDF | Request permission
Abstract:
We extend the GAGA principle, the Kodaira embedding theorem, and Chow’s lemma to supergeometry and conclude that families of super Riemann surfaces are locally algebraic.References
- P. Deligne, Letter to Manin, Princeton, October 1987.
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Claude LeBrun, Yat Sun Poon, and R. O. Wells Jr., Projective embeddings of complex supermanifolds, Comm. Math. Phys. 126 (1990), no. 3, 433–452. MR 1032867
- Claude LeBrun and Mitchell Rothstein, Moduli of super Riemann surfaces, Comm. Math. Phys. 117 (1988), no. 1, 159–176. MR 946998
- Yu. I. Manin, New dimensions in geometry, Uspekhi Mat. Nauk 39 (1984), no. 6(240), 47–73 (Russian). MR 771098
- Yuri I. Manin, Gauge field theory and complex geometry, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 289, Springer-Verlag, Berlin, 1988. Translated from the Russian by N. Koblitz and J. R. King. MR 954833 J. Rabin and P. Topiwala, Super Riemann surfaces are algebraic curves, Univ. California, San Diego, preprint, 1988.
- Jean-Pierre Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197–278 (French). MR 68874, DOI 10.2307/1969915 —, Géometrie algébrique et géometrie analytique, Ann. Inst. Fourier (Grenoble) 6 (1956), 1-42.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 11-20
- MSC: Primary 14M30; Secondary 14H10, 32C11, 58A50
- DOI: https://doi.org/10.1090/S0002-9939-1991-1057963-8
- MathSciNet review: 1057963