COMPLETE METRICS WITH NONPOSITIVE CURVATURE ON THE DISK

DUONG MINH DUC

(Communicated by Barbara L. Keyfitz)

Abstract. We consider complete metrics on the unit disk in \(\mathbb{R}^2 \) that are equivalent and conformal to the Poincaré metric.

Introduction

Let \(D = \{ x \in \mathbb{R}^2 : |x| < 1 \} \) and \(\tilde{K} \) be a real function on \(D \). In [6], Kazdan asked when \(\tilde{K} \) was the Gauss curvature of a complete metric conformal to the Poincaré metric on \(D \). In [1,2,5] we have the "Yes" answer under the following condition:

(0.1) There exist two negative constants \(a \) and \(b \) such that in a neighborhood of the boundary \(\partial D \) of \(D \)

\[a < \tilde{K} < b < 0. \]

We also have the "No" answer in [2] if \(\tilde{K} \) is nonnegative in a neighborhood of \(\partial D \). In this paper we replace (0.1) by \(L^p \)-conditions weaker than the old one. It is natural to use \(L^p \)-conditions because we define the length of curves by integration.

Our method is as follows: Let \(K_0 \) be a nonpositive Hölder-continuous function on \(D \), which is the Gauss curvature of a metric \(\rho = e^{u_0}(dx^2 + dy^2) \) such that \(\rho \) is equivalent to the Poincaré metric. Consider the perturbations \(\tilde{K} = (K + K_0) \) and \(\tilde{v} = v + u_0 \) of \(K_0 \) and \(u_0 \), respectively. We try to find conditions on \(K \) such that there is a bounded solution of the equation

(0.2) \[\Delta u = K_0 e^{2u_0} = (K + K_0)e^{2u_0}e^{2u} \quad \text{in } D. \]

(Note that \(\Delta u_0 = -K_0 e^{2u_0} \).) When \(K_0 = -1 \), \(e^{2u_0} = 4(1 - |x|^2)^{-2} \), and (0.2) becomes

(0.2') \[\Delta u = -\frac{4}{(1 - |x|^2)^2} - \frac{4(K - 1)e^{2u}}{(1 - |x|^2)^2} \quad \text{in } D. \]

Our results are the following theorems.

Received by the editors March 22, 1990 and, in revised form, June 28, 1990.
Key words and phrases. Conformal complete metric, Gauss curvature, nonlinear elliptic equation.
Theorem 1. Let \(\tilde{K} \) be a nonpositive Hölder-continuous function on \(D \) and \(K_0 \) a nonpositive Hölder-continuous function on \(D \), which is the Gauss curvature of a metric conformal and equivalent to the Poincaré metric. Then

(i) There is a solution \(u \) in \(W^{1,2}_0(D) \cap C^2(D) \) of (0.2), if

\[
\int_D \frac{|\tilde{K} - K_0|^2}{(1 - |x|)^2} \, dx < \infty.
\]

(ii) Moreover, this solution is bounded if there are positive real numbers \(p \) and \(\varepsilon \) such that \(p > 1 \), \(\frac{p}{p-1}(1 - \varepsilon) < 1 \), and

\[
\int_D \frac{|\tilde{K} - K_0|^{p(1+\varepsilon)}}{(1 - |x|)^{p(1+\varepsilon)^2}} \, dx < \infty.
\]

Theorem 2. Let \(\tilde{K} \) be a nonpositive Hölder-continuous function on \(D \) and \(K_0 \) a Hölder-continuous function from \(D \) into \([a, b]\), \(a < b < 0 \). Then the conclusions of Theorem 1 hold.

Remark. Here \(\tilde{K} \) may not satisfy (0.1) for any \(a \) and \(b \). Some special examples of \(\tilde{K} \) considered in the theorems above have been given in [2].

In §§1 and 2 we prove the theorems for the case \(K_0 = -1 \), and we consider general cases in the last section.

1. Existence

Denote by \(X \) the family of measurable functions \(u \) such that

\[
\|u\|_* = \int_D \frac{u^2}{(1 - |x|)^2} \, dx < \infty.
\]

Let \(r \in (0, 1) \) and \(D_r = \{ x \in \mathbb{R}^2 : |x| < r \} \). We have the following lemma.

Lemma 1.1. Let \(K \in X \), \(r \in (0, 1) \), and \(v \in W^{1,2}_0(D_r) \). Then there exists a unique solution \(u \) in \(W^{2,2}_0(D_r) \) of the equation

\[
\Delta u = -\frac{4}{(1 - |x|^2)^2} - \frac{4(K - 1)e^{2v}}{(1 - |x|^2)^2} \quad \text{in } D_r.
\]

Proof. Using the Trudinger imbedding theorem [3, 7, 9], we see that the functions in the right-hand side are in \(L^2(D_r) \). Thus by [4, Theorem 8.9, p. 185] we get the lemma. \(\square \)

Fix a \(K \) in \(X \). By Lemma 1.1, the following mapping is well defined:

\[
F : W^{1,2}_0(D_r) \rightarrow W^{2,2}_0(D_r)
\]

\[
F(v) = \Delta^{-1} \left(-\frac{4}{(1 - |x|^2)^2} - \frac{4(K - 1)e^{2v}}{(1 - |x|^2)^2} \right).
\]

We have the following lemma.
Lemma 1.2. Let \(r \in (0, 1) \) and \(K \in X \). Assume \(K - 1 \leq 0 \). Then there exists a solution \(v_r \) in \(W_{0}^{1,2}(D_r) \) of the equation

\[
\Delta v = -\frac{4}{(1 - |x|^2)^2} - \frac{4(K - 1)e^{2v}}{(1 - |x|^2)^2} \quad \text{in } D_r.
\]

Moreover,

\[
\int_{D_r} |\nabla v_r|^2 \, dx \leq 8C|K|^2,
\]

where \(C \) is the constant in the following Hardy inequality:

\[
\int_{D} \frac{|u|^2}{(1 - |x|^2)^2} \, dx \leq C \int_{D} |\nabla u|^2 \, dx \quad \forall u \in W_{0}^{1,2}(D).
\]

Proof. By [4, Lemma 9.17, p. 242] and the Sobolev imbedding theorem, we see that \(F \) is a compact continuous mapping from \(W_{0}^{1,2}(D_r) \) into itself. Put

\[
A = \{ w \in W_{0}^{1,2}(D_r) : w = tFw \text{ for some } t \in (0, 1) \}.
\]

We shall prove that \(A \) is bounded in \(W_{0}^{1,2}(D_r) \). Indeed, let \(t \in (0, 1) \) and \(w \in W_{0}^{1,2}(D_r) \) such that

\[
\Delta w = -\frac{4t}{(1 - |x|^2)^2} - \frac{4t(K - 1)e^{2w}}{(1 - |x|^2)^2} \quad \text{in } D_r.
\]

Put \(w^+ = \max\{0, w\} \) and \(w^- = \max\{0, -w\} \). Multiplying both sides of (1.5) by \(-w\) and integrating them on \(D_r \), we get

\[
\int_{D_r} |\nabla w|^2 \, dx = 4t \int_{D_r} \left\{ \frac{w}{(1 - |x|^2)^2} + \frac{(K - 1)we^{2w}}{(1 - |x|^2)^2} \right\} \, dx,
\]

\[
\leq 4 \int_{D_r} \frac{1}{(1 - |x|^2)^2} \{ w^+ + (K - 1)we^{2w^+} - w^- - (K - 1)we^{-2w^-}\} \, dx.
\]

Since \(K - 1 \leq 0 \), we have

\[
(K - 1)we^{2w^+} \leq (K - 1)w^+ \quad \text{and} \quad -(K - 1)we^{-2w^-} \leq -(K - 1)w^-.
\]

By (1.6) and (1.7), we obtain

\[
\int_{D_r} |\nabla w|^2 \, dx \leq 4 \int_{D_r} \frac{Kw}{(1 - |x|^2)^2} \, dx
\]

\[
\leq 4C \int_{D_r} \frac{|K|^2}{(1 - |x|)^2} \, dx + \frac{1}{2C} \int_{D_r} \frac{|w|^2}{(1 - |x|)^2} \, dx.
\]

By (1.4) and (1.8), we see that

\[
\int_{D_r} |\nabla w|^2 \, dx \leq 8C|K|^2.
\]
Thus, A is bounded in $W^{1,2}_0(D_r)$. Applying the Leray-Schauder principle [10, p. 245], we get a fixed point v_r of F, which is a solution of (1.2) and satisfies (1.3). □

The proof of (i) of Theorem 1 for $K_0 = -1$. Let $\{r_m\}$ be a sequence converging to 1 in $(0, 1)$ and $u \in W^{1,2}_0(D)$ such that $\{u_m|_{D_r}\}$ weakly converges to $u|_{D_r}$ in $W^{1,2}_0(D_r)$ for any r in $(0, 1)$, where $u_m = v_{r_m}$ is defined as in Lemma 1.2. Using [3, Corollary 1.3] we see that u is a weak solution of $W^{1,2}_0(D)$ and satisfies (1.3). □

2. BOUNDEDNESS

First we need the following lemma.

Lemma 2.1. Let Ω be a bounded domain in \mathbb{R}^n with piecewise-smooth boundary $\partial\Omega$. Let g be a nonnegative measurable function on Ω and h be in $L^p(\Omega)$ for some $p > n/2$. Let v be a nonnegative weak solution in $W^{1,2}_0(\Omega) \cap L^\infty(\partial\Omega)$ of the equation

$$\Delta v = g + h \quad \text{in} \quad \Omega.$$

Then $\|v\|_\infty$ is finite and bounded above by a constant depending only on p, $\|h\|_p$, and $\|v\|_1$.

Proof. Let k be an arbitrary positive real number and ζ an arbitrary smooth nonnegative function of compact support in Ω whose values lie between 0 and 1. Put

$$\eta(x) = \zeta^2(x) \max\{v(x) - k ; 0\},$$

$$A_k = \{x \in \Omega : v(x) > k\}.$$

By some simple calculations, we get

$$\int_{A_k} \left\{ |\nabla v|^2 \zeta^2 + \sum_{j=1}^m \frac{\partial v}{\partial x_j} (v - k) \cdot \zeta \frac{\partial \zeta}{\partial x_j} + (g + h)(v - k) \zeta^2 \right\} \, dx = 0.$$

Thus,

$$\int_{A_k} |\nabla v|^2 \zeta^2 \, dx \leq \int_{A_k} \left\{ \frac{1}{2} |\nabla v|^2 \zeta^2 + 2|\nabla \zeta|^2 (v - k)^2 + |h|(v - k) \zeta^2 \right\} \, dx.$$

Now, following the proof of [8, Theorem 13.1, pp. 197–199], we get the lemma. □

In order to prove the boundedness of the solution u in §1, it is sufficient to show that there is a constant M such that $\|u_r\|_\infty \leq M$ for every r in $(0, 1)$, where v_r is as in Lemma 1.2. Indeed, let r be in $(0, 1)$, $w_r = v_r^+$, and Ω be an open subset of $\{x \in D_r : v_r > 0\}$ with piecewise smooth boundary $\partial\Omega$. Since v_r is in $W^{2,2}_0(D_r)$, by the Sobolev imbedding theorem v_r is in $L^\infty(D_r)$. Note that w_r is a nonnegative weak solution in $W^{1,2}(\Omega)$ of

$$\Delta w_r = 4 \frac{e^{2w_r} - 1}{(1 - |x|^2)^2} - \frac{4Ke^{2w}}{(1 - |x|^2)^2}.$$
On the other hand, we have
\[
\|v_r\|_1 \leq \|v_r\|_2 \leq C\|\nabla u\|_2 \leq 8C^2\|K\|_*,
\]
and
\[
\int_D \left| \frac{Ke^{2v_r}}{(1 - |x|^2)^2} \right|^{1+\epsilon} dx \leq \int_D \frac{|K|^{1+\epsilon} e^{2(1+\epsilon)v_r}}{(1 - |x|)^{(1+\epsilon)^2 + (1-\epsilon^2)}} dx \leq \left\{ \int_D \frac{|K|^{p(1+\epsilon)}}{(1 - |x|)^{p(1+\epsilon)^2}} dx \right\}^{1/p} \times \left\{ \int_D \frac{e^{2p(1+\epsilon)v_r/(p-1)}}{(1 - |x|)^{p(1-\epsilon^2)/(p-1)}} dx \right\}^{(p-1)/p}.
\]

Using Theorem 1.3 in [3], we can estimate the last integral in (2.3) by \(\|\nabla v_r\|_2\), then by \(\|K\|_*\). Therefore, by applying Lemma 2.1, we see that \(\{\|w_r\|_\infty\}_r\) is bounded.

Put \(z_r = v_r^-\). Then \(z_r\) is a nonnegative weak solution of
\[
\Delta z_r = 4 \frac{1 - e^{-2z_r}}{(1 - |x|^2)^2} + \frac{4Ke^{-2z_r}}{(1 - |x|^2)^2} \quad \text{in} \quad \{x \in D : v_r < 0\}.
\]

Arguing as above, we see that \(\{\|z_r\|_\infty\}_r\) is bounded. Therefore \(\{\|v_r\|_\infty\}_r\) is bounded and \(\|u\|_\infty\) is finite.

3. General cases

Let \(K_0\) be as in Theorem 1. Then there is a \(C^2\)-function \(u_0\) on \(D\) and two positive constants such that
\[
Ae^{2u_0} \leq 4(1 - |x|^2)^{-2} \leq Be^{2u_0}
\]
and
\[
\Delta u_0 = -Ke^{2u_0}.
\]

Let \(K \in X\) and \(v = u_0 + u\). Then we have
\[
\Delta v + (K + K_0)e^{2v} = 0 \Rightarrow \Delta u = K_0e^{2u_0} - (K + K_0)e^{2u_0}e^{2u}.
\]
Assume that \(\tilde{K} = K + K_0 \leq 0\). Then, by (3.1), (3.3) is similar to (1.1). Therefore, by a similar procedure we can prove Theorem 1 for the case \(K_0 \neq -1\).

Now let \(a < b < 0\) and \(K_0\) be a \(C^2\)-function from \(D\) into \([a, b]\). By results in [1, 2], \(K_0\) satisfies the conditions of Theorem 1. Therefore we get Theorem 2. □

Acknowledgments

The author would like to thank Professor Abdus Salam, the International Atomic Energy Agency, and UNESCO for their hospitality at ICTP. He also would like to thank Professor Alberto Verjovsky for warm and successful discussions and the referee for reference [5].
REFERENCES

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS, TRIESTE, ITALY

Current address: Department of Mathematics, University of Hochiminh City, Hochiminh City, Vietnam