## On weak reverse integral inequalities for mean oscillations

HTML articles powered by AMS MathViewer

- by Michelangelo Franciosi
- Proc. Amer. Math. Soc.
**113**(1991), 105-112 - DOI: https://doi.org/10.1090/S0002-9939-1991-1068122-7
- PDF | Request permission

## Abstract:

We prove that if $f$ verifies a reverse Hölder inequality with exponent $p,1 < p < + \infty$, then ${(Mf + {f^\# })^p}$ is a ${A_1}$-weight of Muckenhoupt, where $Mf$ is the Hardy-Littlewood maximal function and ${f^\# }$ the Fefferman-Stein maximal function.## References

- Colin Bennett and Robert Sharpley,
*Weak-type inequalities for $H^{p}$ and BMO*, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 201–229. MR**545259** - Colin Bennett and Robert Sharpley,
*Interpolation of operators*, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR**928802**
B. Boyarski, - B. Bojarski and T. Iwaniec,
*Analytical foundations of the theory of quasiconformal mappings in $\textbf {R}^{n}$*, Ann. Acad. Sci. Fenn. Ser. A I Math.**8**(1983), no. 2, 257–324. MR**731786**, DOI 10.5186/aasfm.1983.0806 - Anna Canale,
*A higher integrability theorem from reverse Hölder weighted inequalities with different supports*, Boll. Un. Mat. Ital. A (7)**5**(1991), no. 2, 137–146 (English, with Italian summary). MR**1120373**, DOI 10.1287/ijoc.1050.0144 - R. R. Coifman and C. Fefferman,
*Weighted norm inequalities for maximal functions and singular integrals*, Studia Math.**51**(1974), 241–250. MR**358205**, DOI 10.4064/sm-51-3-241-250 - Eugene B. Fabes, Carlos E. Kenig, and Raul P. Serapioni,
*The local regularity of solutions of degenerate elliptic equations*, Comm. Partial Differential Equations**7**(1982), no. 1, 77–116. MR**643158**, DOI 10.1080/03605308208820218 - Michelangelo Franciosi,
*Maximum principle for second order elliptic equations and applications*, J. Math. Anal. Appl.**138**(1989), no. 2, 343–348. MR**991028**, DOI 10.1016/0022-247X(89)90294-1 - Michelangelo Franciosi,
*Weighted rearrangements and higher integrability results*, Studia Math.**92**(1989), no. 2, 131–139. MR**986944**, DOI 10.4064/sm-92-2-131-139 - Michelangelo Franciosi and Gioconda Moscariello,
*Higher integrability results*, Manuscripta Math.**52**(1985), no. 1-3, 151–170. MR**790797**, DOI 10.1007/BF01171490
—, - F. W. Gehring,
*The $L^{p}$-integrability of the partial derivatives of a quasiconformal mapping*, Acta Math.**130**(1973), 265–277. MR**402038**, DOI 10.1007/BF02392268
C. Herz, - Tadeusz Iwaniec,
*On $L^{p}$-integrability in PDEs and quasiregular mappings for large exponents*, Ann. Acad. Sci. Fenn. Ser. A I Math.**7**(1982), no. 2, 301–322. MR**686647**, DOI 10.5186/aasfm.1982.0719 - Benjamin Muckenhoupt,
*Weighted norm inequalities for the Hardy maximal function*, Trans. Amer. Math. Soc.**165**(1972), 207–226. MR**293384**, DOI 10.1090/S0002-9947-1972-0293384-6 - Carlo Sbordone,
*Higher integrability from reverse integral inequalities*, Methods of functional analysis and theory of elliptic equations (Naples, 1982) Liguori, Naples, 1983, pp. 347–357. MR**819021** - Carlo Sbordone,
*On some integral inequalities and their applications to the calculus of variations*, Boll. Un. Mat. Ital. C (6)**5**(1986), no. 1, 73–94 (1987). MR**897186**
—, - Ingemar Wik,
*Note on a theorem by Reshetnyak-Gurov*, Studia Math.**86**(1987), no. 3, 287–290. MR**917054**, DOI 10.4064/sm-86-3-287-290
—,

*On Gurov-Reshetnyak classes*(to appear).

*A note on the maximum principle for 2nd order non variational linear elliptic equations*, Ricerche Mat.

**XXXV**(1986), 279-290.

*The Hardy-Littlewood maximal theorems*, Sympos. on Harm. Analysis, Univ. of Warwick, 1968.

*Some reverse integral inequalities*, Atti Accad. Pontaniana, Napoli, 1984.

*On Muckenhoupt’s classes of weight functions*, Studia Math. Instituto Di Matematica, Barorllssi, 84100 Salermo (to appear).

## Bibliographic Information

- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**113**(1991), 105-112 - MSC: Primary 42B25; Secondary 46E30
- DOI: https://doi.org/10.1090/S0002-9939-1991-1068122-7
- MathSciNet review: 1068122