## A note on inner actions of Hopf algebras

HTML articles powered by AMS MathViewer

- by Stefaan Caenepeel PDF
- Proc. Amer. Math. Soc.
**113**(1991), 31-39 Request permission

## Abstract:

Let $H$ be a commutative, cocommutative, and faithfully projective Hopf algebra over a commutative ring $R$. A twisted version of inner action of a Hopf algebra, called $H$-inner action is introduced, and it is shown that $H$ acts $H$-innerly on an $H$-Azumaya algebra, if $\operatorname {Pic} ({H^ * })$ is trivial.## References

- Eiichi Abe,
*Hopf algebras*, Cambridge Tracts in Mathematics, vol. 74, Cambridge University Press, Cambridge-New York, 1980. Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka. MR**594432**
M. Beattie, - Margaret Beattie,
*Automorphisms of $G$-Azumaya algebras*, Canad. J. Math.**37**(1985), no. 6, 1047–1058. MR**828833**, DOI 10.4153/CJM-1985-056-7 - Margaret Beattie,
*Inner gradings and Galois extensions with normal basis*, Proc. Amer. Math. Soc.**107**(1989), no. 4, 881–886. MR**975632**, DOI 10.1090/S0002-9939-1989-0975632-8 - Margaret Beattie and K.-H. Ulbrich,
*A Skolem-Noether theorem for Hopf algebra actions*, Comm. Algebra**18**(1990), no. 11, 3713–3724. MR**1068617**, DOI 10.1080/00927879008824104 - Robert J. Blattner, Miriam Cohen, and Susan Montgomery,
*Crossed products and inner actions of Hopf algebras*, Trans. Amer. Math. Soc.**298**(1986), no. 2, 671–711. MR**860387**, DOI 10.1090/S0002-9947-1986-0860387-X - S. Caenepeel,
*Computing the Brauer-Long group of a Hopf algebra. I. The cohomological theory*, Israel J. Math.**72**(1990), no. 1-2, 38–83. Hopf algebras. MR**1098980**, DOI 10.1007/BF02764611 - S. Caenepeel and M. Beattie,
*A cohomological approach to the Brauer-Long group and the groups of Galois extensions and strongly graded rings*, Trans. Amer. Math. Soc.**324**(1991), no. 2, 747–775. MR**987160**, DOI 10.1090/S0002-9947-1991-0987160-8 - Lindsay N. Childs,
*Representing classes in the Brauer group of quadratic number rings as smash products*, Pacific J. Math.**129**(1987), no. 2, 243–255. MR**909029** - Miriam Cohen,
*Smash products, inner actions and quotient rings*, Pacific J. Math.**125**(1986), no. 1, 45–66. MR**860749** - Susan Hurley,
*Galois objects with normal bases for free Hopf algebras of prime degree*, J. Algebra**109**(1987), no. 2, 292–318. MR**902954**, DOI 10.1016/0021-8693(87)90141-4 - Max-Albert Knus and Manuel Ojanguren,
*Théorie de la descente et algèbres d’Azumaya*, Lecture Notes in Mathematics, Vol. 389, Springer-Verlag, Berlin-New York, 1974 (French). MR**0417149**
M. Koppinen, - F. W. Long,
*The Brauer group of dimodule algebras*, J. Algebra**30**(1974), 559–601. MR**357473**, DOI 10.1016/0021-8693(74)90224-5 - Akira Masuoka,
*Coalgebra actions on Azumaya algebras*, Tsukuba J. Math.**14**(1990), no. 1, 107–112. MR**1063840**, DOI 10.21099/tkbjm/1496161323 - Susan Montgomery,
*Inner actions of Hopf algebras*, Ring theory 1989 (Ramat Gan and Jerusalem, 1988/1989) Israel Math. Conf. Proc., vol. 1, Weizmann, Jerusalem, 1989, pp. 141–149. MR**1029308**
J. Osterburg and D. Quinn, - Alex Rosenberg and Daniel Zelinsky,
*Automorphisms of separable algebras*, Pacific J. Math.**11**(1961), 1109–1117. MR**148709** - Moss Eisenberg Sweedler,
*Cohomology of algebras over Hopf algebras*, Trans. Amer. Math. Soc.**133**(1968), 205–239. MR**224684**, DOI 10.1090/S0002-9947-1968-0224684-2 - Moss E. Sweedler,
*Hopf algebras*, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. MR**0252485**

*Brauer groups of*$H$

*-module and*$H$

*-dimodule algebras*, thesis, Queens Univ., Kingston, Ontario, 1976.

*A Skolem-Noether Theorem for Hopf algebra measurings*, preprint.

*A Skolem-Noether theorem for group graded rings*, J. Algebra

**113**(1988), 483-490; Addendum to

*A Skolem-Noether theorem for group graded rings*, J. Algebra

**120**(1989), 414-415.

## Additional Information

- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**113**(1991), 31-39 - MSC: Primary 16W30; Secondary 16H05
- DOI: https://doi.org/10.1090/S0002-9939-1991-1069684-6
- MathSciNet review: 1069684