A note on inner actions of Hopf algebras
HTML articles powered by AMS MathViewer
- by Stefaan Caenepeel PDF
- Proc. Amer. Math. Soc. 113 (1991), 31-39 Request permission
Abstract:
Let $H$ be a commutative, cocommutative, and faithfully projective Hopf algebra over a commutative ring $R$. A twisted version of inner action of a Hopf algebra, called $H$-inner action is introduced, and it is shown that $H$ acts $H$-innerly on an $H$-Azumaya algebra, if $\operatorname {Pic} ({H^ * })$ is trivial.References
- Eiichi Abe, Hopf algebras, Cambridge Tracts in Mathematics, vol. 74, Cambridge University Press, Cambridge-New York, 1980. Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka. MR 594432 M. Beattie, Brauer groups of $H$-module and $H$-dimodule algebras, thesis, Queens Univ., Kingston, Ontario, 1976.
- Margaret Beattie, Automorphisms of $G$-Azumaya algebras, Canad. J. Math. 37 (1985), no. 6, 1047–1058. MR 828833, DOI 10.4153/CJM-1985-056-7
- Margaret Beattie, Inner gradings and Galois extensions with normal basis, Proc. Amer. Math. Soc. 107 (1989), no. 4, 881–886. MR 975632, DOI 10.1090/S0002-9939-1989-0975632-8
- Margaret Beattie and K.-H. Ulbrich, A Skolem-Noether theorem for Hopf algebra actions, Comm. Algebra 18 (1990), no. 11, 3713–3724. MR 1068617, DOI 10.1080/00927879008824104
- Robert J. Blattner, Miriam Cohen, and Susan Montgomery, Crossed products and inner actions of Hopf algebras, Trans. Amer. Math. Soc. 298 (1986), no. 2, 671–711. MR 860387, DOI 10.1090/S0002-9947-1986-0860387-X
- S. Caenepeel, Computing the Brauer-Long group of a Hopf algebra. I. The cohomological theory, Israel J. Math. 72 (1990), no. 1-2, 38–83. Hopf algebras. MR 1098980, DOI 10.1007/BF02764611
- S. Caenepeel and M. Beattie, A cohomological approach to the Brauer-Long group and the groups of Galois extensions and strongly graded rings, Trans. Amer. Math. Soc. 324 (1991), no. 2, 747–775. MR 987160, DOI 10.1090/S0002-9947-1991-0987160-8
- Lindsay N. Childs, Representing classes in the Brauer group of quadratic number rings as smash products, Pacific J. Math. 129 (1987), no. 2, 243–255. MR 909029
- Miriam Cohen, Smash products, inner actions and quotient rings, Pacific J. Math. 125 (1986), no. 1, 45–66. MR 860749
- Susan Hurley, Galois objects with normal bases for free Hopf algebras of prime degree, J. Algebra 109 (1987), no. 2, 292–318. MR 902954, DOI 10.1016/0021-8693(87)90141-4
- Max-Albert Knus and Manuel Ojanguren, Théorie de la descente et algèbres d’Azumaya, Lecture Notes in Mathematics, Vol. 389, Springer-Verlag, Berlin-New York, 1974 (French). MR 0417149 M. Koppinen, A Skolem-Noether Theorem for Hopf algebra measurings, preprint.
- F. W. Long, The Brauer group of dimodule algebras, J. Algebra 30 (1974), 559–601. MR 357473, DOI 10.1016/0021-8693(74)90224-5
- Akira Masuoka, Coalgebra actions on Azumaya algebras, Tsukuba J. Math. 14 (1990), no. 1, 107–112. MR 1063840, DOI 10.21099/tkbjm/1496161323
- Susan Montgomery, Inner actions of Hopf algebras, Ring theory 1989 (Ramat Gan and Jerusalem, 1988/1989) Israel Math. Conf. Proc., vol. 1, Weizmann, Jerusalem, 1989, pp. 141–149. MR 1029308 J. Osterburg and D. Quinn, A Skolem-Noether theorem for group graded rings, J. Algebra 113 (1988), 483-490; Addendum to A Skolem-Noether theorem for group graded rings, J. Algebra 120 (1989), 414-415.
- Alex Rosenberg and Daniel Zelinsky, Automorphisms of separable algebras, Pacific J. Math. 11 (1961), 1109–1117. MR 148709
- Moss Eisenberg Sweedler, Cohomology of algebras over Hopf algebras, Trans. Amer. Math. Soc. 133 (1968), 205–239. MR 224684, DOI 10.1090/S0002-9947-1968-0224684-2
- Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. MR 0252485
Additional Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 31-39
- MSC: Primary 16W30; Secondary 16H05
- DOI: https://doi.org/10.1090/S0002-9939-1991-1069684-6
- MathSciNet review: 1069684