SPLIT BRAIDS

STEPHEN P. HUMPHRIES

(Communicated by Warren J. Wong)

Abstract. Let B_n be the group of braids on n strings with standard generators $\sigma_1, \ldots, \sigma_{n-1}$. For $i \in \{1, 2, \ldots, n-1\}$ we let B'_n be the subgroup of B_n generated by the elements $\sigma_1, \ldots, \sigma_{i-1}, \sigma_{i+1}, \ldots, \sigma_{n-1}$. In this paper we give an algorithm for deciding if, given $\alpha \in B_n$ there is $i \in \{1, 2, \ldots, n-1\}$ such that α is conjugate into B'_n. We call such a braid a split braid. Such a split braid gives rise to a split link. This algorithm gives a partial solution to the problem of finding braids that represent reducible mapping classes. It also represents a contribution to the algebraic link problem and it gives a way of determining if a braid in B_n can be conjugated into the subgroup B_{n-1}, which we identify with B_{n-1}.

1. Introduction

For $n > 1$ let B_n be the group of braids on n strings. Then B_n has a presentation as a group with generators $\sigma_1, \ldots, \sigma_{n-1}$ and relations

$$\sigma_i \sigma_j = \sigma_j \sigma_i \quad \text{if} \quad 1 \leq i, j \leq n-1 \quad \text{and} \quad |i-j| > 1;$$

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \quad \text{for} \quad 1 \leq i < n-1.$$

It is also well known that B_n has a faithful representation in $\text{Aut}(F(n))$, the group of automorphisms of the free group $F(n)$ of rank n. If x_1, \ldots, x_n are fixed free generators for $F(n)$, then the action of B_n on $F(n)$ is given by the following actions of the generators $\sigma_1, \ldots, \sigma_{n-1}$ of B_n on the generators x_1, \ldots, x_n of $F(n)$:

$$\sigma_i(x_j) = \begin{cases} x_j & \text{if} \quad j \neq i, \ i+1, \\ x_{i+1} & \text{if} \quad j = i, \\ x_{i+1}^{-1}x_ix_{i+1} & \text{if} \quad j = i+1. \end{cases}$$

It is easy to check that with this action the word $x_1x_2\cdots x_n$ is fixed and that if $\alpha \in B_n$, then each $\alpha(x_i)$ is a conjugate of some x_j. In fact these two properties characterize the image of or braid group in $\text{Aut}(F(n))$ and we
sometimes confuse a braid α with the n–tuple of words $(\alpha(x_1), \ldots, \alpha(x_n))$. This representation of the braid groups has a geometric interpretation since B_n acts as a group of mapping classes of an n–punctured disc D_n. The above action can then be realized as the action of B_n on the fundamental group of D_n, which is a free group of rank n. We identify this group with $F(n)$. Let $\pi_n: B_n \to S_n$ be the permutation representation of B_n onto the symmetric group. For more information on braid groups see [Bi, Ma].

For $i \in \{1, 2, \ldots, n-1\}$ we let B'_n be the subgroup of B_n generated by the elements $\sigma_1, \ldots, \sigma_{i-1}, \sigma_{i+1}, \ldots, \sigma_{n-1}$. In this paper we give an algorithm for determining if, given $\alpha \in B_n$, there is $i \in \{1, 2, \ldots, n-1\}$ such that α is conjugate into B'_n. We call such a braid a split braid. This algorithm gives a partial solution to the problem of finding braids that represent reducible mapping classes, i.e. braids whose action on the disc D_n fixes the isotopy class of a nontrivial, nonboundary parallel simple closed curve on D_n. Furthermore the closed braid $\hat{\alpha}$ corresponding to a split braid α is a split link in the sense that there is an S^2 disjoint from $\hat{\alpha}$ separating the components of $\hat{\alpha}$. Thus our result also represents a contribution to the algebraic link problem. Also note that in the case $i = n - 1$ our method gives a way of determining if a braid in B_n can be conjugated into the subgroup B'_n, which we can identify with B_{n-1}.

2. The algorithm

For each subset $I \subset \{1, 2, \ldots, n\}$ there is a map $\varphi_I: B_n \to B_n$, which consists of taking a braid α in B_n and for each $i \in I$ pulling out the string that ends up in the ith position after doing α, and putting it back in as a straight string to the right of all the other strings. We think of $\varphi_I(\alpha)$ as belonging to the subgroup B_n consisting of braids fixing the last $|I|$ strings, where $|I|$ is the cardinality of the set I. This process involves a relabelling of the strings and is illustrated in the case $n = 4$, $I = \{3\}$ in Figure 1.

Note that the map φ_I is not a homomorphism; however, we do have the following result:

Lemma 2.1. Let $I \subset \{1, 2, \ldots, n\}$ and $\alpha, \beta \in B_n$. Then $\varphi_I(\alpha\beta) = \varphi_I(\alpha)\varphi_I(\beta)$, where $J = \pi(\alpha^{-1})(I)$.

![Figure 1](https://www.ams.org/journal-terms-of-use)
Proof. The proof consists of noticing that if $i \in I$ and if $j = \pi(\alpha^{-1})(i)$, then it is the jth string of β that is removed when we remove the ith string of α. □

For $I \subset \{1, 2, \ldots, n\}$ we let Y_I be the stabilizer of I in B_n, i.e. the subgroup consisting of all the braids α such that $\pi(\alpha^{-1})(I) = I$. Since Y_I contains the pure braid group it follows easily that Y_I is of finite index in B_n.

Then the key observation is:

Proposition 2.2. Let $\alpha, \gamma \in Y_I$ and $\beta = \gamma \alpha \gamma^{-1}$. Then $\varphi_I(\beta)$ is a conjugate of α in B_n.

Proof. Let α, γ, and β be as above. Then Lemma 2.1 shows that

$$
\varphi_I(\beta) = \varphi_I(\gamma \alpha \gamma^{-1}) = \varphi_I(\gamma) \varphi_I(\alpha) \varphi_I(\gamma^{-1}),
$$

and so the result follows if we can show that $\varphi_I(\gamma^{-1}) = \varphi_I(\gamma)^{-1}$. Again Lemma 2.1 shows that we have, $\text{id} = \varphi_I(\gamma \gamma^{-1}) = \varphi_I(\gamma) \varphi_I(\gamma^{-1})$ and so the result follows. □

We next show that the definition of φ_I amounts to the following algebraic operation as far as the braid automorphisms are concerned. If $m \leq n$, then we think of $F(m)$ as the subgroup of $F(n)$ generated by x_1, \ldots, x_m. We also use the notation $\alpha^*(I)$ instead of $\pi(\alpha^{-1})(I)$. Note that we have

$$(\alpha \beta)^*(I) = \pi((\alpha \beta)^{-1})(I) = \pi(\beta^{-1}) \pi(\alpha^{-1})(I) = \beta^* \alpha^*(I).$$

The next result is a consequence of Lemmas 2.4 and 2.5.

Proposition 2.3. Suppose that $I \subset \{1, 2, \ldots, n\}$. If $j \in \{1, 2, \ldots, n\} \setminus I$ then we let $n(j) = n(j, I)$ be the number of elements of I that are strictly less than j. If $\alpha \in B_n$, then $\varphi_I(\alpha)(x_j) = \Sigma_I(\alpha(x_j))$ where $\Sigma_I : F(n) \to F(n - |I|)$ is the epimorphism defined by the following action on the generators of $F(n)$:

$$
\begin{align*}
\Sigma_I(x_k) &= x_{k-n(k)} & \text{if } k \in \{1, 2, \ldots, n\} \setminus I; \\
\Sigma_I(x_i) &= \text{identity} & \text{if } i \in I.
\end{align*}
$$

We let Σ_I act on the generators of B_n in the following way:

$$
\begin{align*}
\Sigma_I(\sigma_k) &= \sigma_{k-n(k)} & \text{if } k \in \{1, 2, \ldots, n-1\} \setminus I; \\
\Sigma_I(\sigma_i) &= \text{identity} & \text{if } i \in I.
\end{align*}
$$

In what follows it is convenient to define $n(i) = \infty$ if $i \in I$ and to have the convention that $x_\infty = \text{id}$ in $F(n)$, $\sigma_\infty = \text{id}$ in B_n.

Lemma 2.4. Let $X \in F(n)$ and $\varepsilon = \pm 1$.

(a) If $k, k+1 \in \{1, 2, \ldots, n\} \setminus I$, then $\Sigma_I(\sigma_k^\varepsilon(X)) = \sigma_{k-n(k)}(\Sigma_I(X))$.

(b) If $k \in I$, but $k+1 \in \{1, \ldots, n\} \setminus I$, then $\Sigma_I(\sigma_k^\varepsilon(X)) = \Sigma_{I'}(X)$ where $I' = \sigma_k^*(I)$.
(c) If \(k \) does not belong to \(I \) but \(k + 1 \) does, then \(\Sigma_I(\sigma_k^e(X)) = \Sigma_{I'}(X) \)
where \(I' = \sigma_k^e(I) \).

(d) If \(k, k + 1 \in I \), then \(\Sigma_I(\sigma_k^e(X)) = \Sigma_I(X) \).

The functions \(\Sigma_I \) satisfy
\[
\Sigma_I(\sigma_k^eX) = \Sigma_{I \subseteq I'}(\sigma_k^e)\Sigma_{I'}(X),
\]
where \(I' = \sigma_k^e(I) \) and \(X \in F(n) \).

Proof. In each case below we only prove the result for \(e = +1 \), the other case
being similar. (a) Suppose that \(k, k + 1 \in \{1, 2, \ldots, n\} \setminus I \). Then \(n(k) = n(k + 1) \) and so we have

\[\begin{align*}
(\text{i}) & \quad \Sigma_I(\sigma_k(x_k)) = \Sigma_I(x_{k+1}) = x_{k-n(k)+1} = \sigma_{k-n(k)}(x_{k-n(k)}) = \sigma_{k-n(k)}(\Sigma_I(x_k)); \\
(\text{ii}) & \quad \Sigma_I(\sigma_k(x_{k+1})) = \Sigma_I(x_{k+1}^{-1}x_kx_{k+1}) = x_{k+1-n(k)}x_{k-n(k)}x_{k+1-n(k)} = \\
& \quad \sigma_{k-n(k)}(\Sigma_I(x_{k+1})); \text{ and} \\
(\text{iii}) & \quad \text{If } j \neq k, k + 1, \text{ then } \Sigma_I(\sigma_k(x_j)) = \Sigma_I(x_j) = x_{j-n(j)} \quad \text{and} \\
& \quad \sigma_{k-n(k)}(\Sigma_I(x_j)) = \sigma_{k-n(k)}(x_j). \quad \text{To see that } x_{j-n(j)} = \sigma_{k-n(k)}(x_j), \text{ we consider case 1: } j < k, \text{ and case} \\
& \quad 2: j > k + 1. \text{ In case 1 we have two subcases; (a) } j \in I; \text{ and (b) } j \text{ not in } I. \text{ If} \\
& \quad (a) \text{ then } x_{j-n(j)} = \text{id and we are O.K. If (b), then } n(k) - n(j) \leq k - j - 1 < k - j \text{ showing that } k - n(k) > j - n(j), \text{ which gives the result. If we have case 2,} \\
& \quad \text{then again we consider the two cases (a) and (b) above. If we have (a), then} \\
& \quad x_{j-n(j)} = \text{id and we are done. If (b), then } k, k + 1 \text{ not in } I \text{ means that} \\
& \quad n(j) - n(k) \leq j - k - 2 \text{ and so } j - n(j) > k - n(k) + 1, \text{ which gives the result.} \text{ This proves part (a) of Lemma 2.4.} \\
\end{align*}\]

(b) Suppose that \(k \in I \), but \(k + 1 \in \{1, \ldots, n\} \setminus I \). Let \(I' = \sigma_k^e(I) = \\
(\{I \setminus \{k\}\} \cup \{k + 1\}) \). Then (i) \(\Sigma_I(\sigma_k(x_k)) = \Sigma_I(x_{k+1}) = x_{k+1-n(k+1)} \) and \(\Sigma_{I'}(x_k) = \\
x_{k-n(k+1)} \); but it is easily seen that \(n(k, I') = n(k+1, I) \), and so the result
follows in this case. (ii) We have \(\Sigma_I(\sigma_k(x_{k+1})) = \Sigma_I(x_{k+1}^{-1}x_kx_{k+1}) = \text{id} \) and \\
\(\Sigma_{I'}(x_{k+1}) = \text{id}. \) (iii) If \(j \neq k, k + 1 \), then \(\Sigma_I(\sigma_k(x_j)) = \Sigma_I(x_j) = x_{j-n(j)} \), \\
and \(\Sigma_{I'}(x_j) = x_{j-n(j)} \). \text{ The result now follows from the fact that } n(j, I) = \\
n(j, I') \text{ if } j \neq k, k + 1.

(c) Suppose that \(k + 1 \in I \), but \(k \in \{1, \ldots, n\} \setminus I \). Let \(I' = \sigma_k^e(I) = \\
(\{I \setminus \{k\}\} \cup \{k + 1\}) \). Then (i) \(\Sigma_I(\sigma_k(x_k)) = \Sigma_I(x_{k+1}) = \text{id} \) and \(\Sigma_{I'}(x_k) = \text{id}. \) (ii) \\
(\text{ii}) \text{ We have } \Sigma_I(\sigma_k(x_{k+1})) = \Sigma_I(x_{k+1}^{-1}x_kx_{k+1}) = \text{id} \quad \text{and} \\
\Sigma_{I'}(x_{k+1}) = \text{id}. \quad \text{ (iii) If } j \neq k, k + 1, \text{ then } \Sigma_I(\sigma_k(x_j)) = \Sigma_I(x_j) = x_{j-n(j)} \text{ and } \Sigma_{I'}(x_j) = x_{j-n(j)} \text{.} \text{ The result now follows since } n(j, I) = n(j, I') \text{ if } j \neq k, k + 1.

(d) If \(k, k + 1 \in I \), then \(\Sigma_I(\sigma_k^e(x_j)) = x_{j-n(j)} = \Sigma_I(x_j) \) for all \(j \).

The remaining formula is easily checked using parts (a), (b), (c), and (d),
which cover all cases. \(\square \)

In light of the above result we are now justified in writing
\(\Sigma_I\sigma_k^e \alpha = \Sigma_{I \cup I'}(\sigma_k^e)\Sigma_{I'}\alpha \) where \(\alpha \in B^n \). We do this in what follows.
The idea for the proof of Proposition 2.3 is to show that Σ_I has the same properties as does φ_I; so we next prove the analogue of Lemma 2.1:

Lemma 2.5. Let $\alpha, \beta \in B_n$. Then $\Sigma_I(\alpha\beta) = \Sigma_I(\alpha)\Sigma_I(\beta)$, where $J = \alpha^*(I)$.

Proof. We induct on the length r of the word α. Clearly the result is true in the case $r = 0$ ($\alpha = \text{identity}$). So now suppose that the result is true for all words α of length $N \geq 0$ and suppose that $\alpha = \sigma_k^\varepsilon \alpha'$, where $\varepsilon = \pm 1$ and the length of α' is N. By induction we now have $\Sigma_I(\alpha'\beta) = \Sigma_I(\alpha')\Sigma_I(\beta)$ for all $I \subset \{1, \ldots, n\}$, with $J = (\alpha')^*(I)$. Thus if $I \subset \{1, \ldots, n\}$, $I' = (\sigma_k^\varepsilon)^*(I)$ and $J' = (\alpha')^*(I')$, then by Lemma 2.4 we have

$$\Sigma_I(\alpha\beta) = \Sigma_I(\sigma_k^\varepsilon \alpha' \beta) = \Sigma_I \cup I' (\sigma_k^\varepsilon) \Sigma_I' (\alpha' \beta)$$

$$= \Sigma_I \cup I' (\sigma_k^\varepsilon) \Sigma_I' (\alpha') \Sigma_J (\beta)$$

$$= \Sigma_I (\sigma_k^\varepsilon \alpha') \Sigma_J (\beta),$$

which is what we require since

$$J' = (\alpha')^*(I') = (\alpha')^*((\sigma_k^\varepsilon)^*(I)) = (\sigma_k^\varepsilon \alpha')^*(I). \quad \square$$

Now Proposition 2.3 follows from the last result and the fact that $\varphi_I \sigma_k^\varepsilon = \Sigma_I (\sigma_k^\varepsilon)$ for all $I \subset \{1, \ldots, n\}$, $\varepsilon = \pm 1$, and $k = 1, \ldots, n - 1$. \quad \square

Lemma 2.6. Let $\{y_1, \ldots, y_m\}$ be a set of coset representatives for Y_I in B_n. Let $J = \{1, 2, \ldots, i\}$ and $I = \{i + 1, i + 2, \ldots, n\}$. If $y \in B_n$ and $a = axa_2 \in B'^n$, where $ax \in \langle a_1, \ldots, a_{i-1} \rangle$ and $a_2 \in \langle a_{i+1}, \ldots, a_{n-1} \rangle$, then there is $k = 1, \ldots, m$ such that $\varphi_I(y_k y_\gamma^{-1} y_k^{-1})$ is a conjugate of a_1 in B_n and $\varphi_J(y_k y_\gamma^{-1} y_k^{-1})$ is a conjugate of a_2 in B_n.

Proof. For this choice of γ there is $k = 1, \ldots, m(i)$ such that $y_k \gamma$ is in Y_I. Then by Lemma 2.1 we see that

$$\varphi_I(y_k \gamma \alpha \gamma^{-1} y_k^{-1}) = \varphi_I(y_k \gamma) \varphi_I(\alpha \gamma^{-1} y_k^{-1})$$

$$= \varphi_I(y_k \gamma) \varphi_I(\alpha) \varphi_I(\gamma^{-1} y_k^{-1})$$

$$= \varphi_I(y_k \gamma) \varphi_I(\alpha_1 \alpha_2) \varphi_I(\gamma y_k)^{-1}$$

$$= \varphi_I(y_k \gamma) \alpha_1 \varphi_I(\gamma y_k)^{-1}$$

is a conjugate of a_1 in B_n as required. A similar argument shows that $\varphi_J(y_k \gamma \alpha \gamma^{-1} y_k^{-1})$ is a conjugate of $\varphi_J(\alpha_2)$; but one easily sees that $\varphi_J(\alpha_2)$ is a conjugate of $\varphi_J(\alpha_2)$ in B_n and so the result follows. \quad \square

For the moment let us keep the notation of Lemma 2.6. Now if $m \geq i + j - 1$, then we let $\Pi_i : B_j \to B_m$ be the monomorphism determined by $\Pi_i (\sigma_k) = \sigma_{k+i-1}$ for all $k = 1, \ldots, j - 1$. Then $\Pi_{i+1} \Sigma_I (\Sigma_k) = \Sigma_h$ for all $h = i + 1, \ldots, n - 1$. This fact, together with the proof of Lemma 2.6, gives the following result.
Corollary 2.7. If $\alpha = \alpha_1 \alpha_2 \in B_n^i$, where $\alpha_1 \in \langle \sigma_1, \ldots, \sigma_{i-1} \rangle$ and $\alpha_2 \in \langle \sigma_{i+1}, \ldots, \sigma_{n-1} \rangle$, then α is conjugate in B_n to

$$(\varphi_j(y_k \gamma \alpha \gamma^{-1} y_k^{-1}))(\Pi_{i+1} \varphi_j(y_k \gamma \alpha \gamma^{-1} y_k^{-1})).$$

□

We now describe the algorithm for determining if we can conjugate $\alpha \in B_n$ into some B_n^i. This is based on the above results and the fact that the conjugacy problem is solved in B_n^i.

Step 1. For each $i = 1, 2, \ldots, n$ we let $I = \{1, 2, \ldots, n\}\{i\}$ and find a set $\{y_1, \ldots, y_{m(i)}\}$ of coset representatives for Y_i in B_n.

Do Steps 2(i) and 3(i) for each $i = 1, \ldots, m(i)$. If α is conjugate to a braid in B_n^i, then we succeed for some value of i, by Corollary 2.7.

Step 2(i). Let $w_i = (\varphi_j(y_k \gamma \alpha \gamma^{-1} y_k^{-1}))(\Pi_{i+1} \varphi_j(y_k \gamma \alpha \gamma^{-1} y_k^{-1}))$ where we calculate this braid using Proposition 2.3. The braid w_i has a representation as a product of the standard generators and their inverses, which is calculated using an algorithm described in the proof of a theorem of Artin (see [Bi, p. 30]).

Step 3(i). Use the solution of the conjugacy problem as presented in [Ga] (see also [Bi]) to determine whether w_i and α are conjugate in B_n^i.

If no w_i is conjugate to α, for all $k = 1, \ldots, m(i)$, then α is not conjugate to a braid in B_n^i by Corollary 2.7.

References

Department of Mathematics, Brigham Young University, Provo, Utah 84602