## On the integrability and $L^ 1$-convergence of complex trigonometric series

HTML articles powered by AMS MathViewer

- by Ferenc Móricz
- Proc. Amer. Math. Soc.
**113**(1991), 53-64 - DOI: https://doi.org/10.1090/S0002-9939-1991-1072345-0
- PDF | Request permission

## Abstract:

We prove that if a weakly even sequence $\{ {c_k}:k = 0, \pm 1, \ldots \}$ of complex numbers is such that for some $p > 1$ we have \[ \sum \limits _{m = 1}^\infty {{2^{m/q}}} {\left ( {\sum \limits _{k = {2^{m - 1}}}^{{2^m} - 1} {{{\left | {\Delta \left ( {{c_k} + {c_{ - k}}} \right )} \right |}^p}} } \right )^{1/p}} < \infty ,\frac {1}{p} + \frac {1}{q} = 1,\] then the symmetric partial sums of the trigonometric series $( * )\sum \nolimits _{k = - \infty }^\infty {{c_k}{e^{ikx}}}$ converge pointwise, except possibly at $x = 0(\operatorname {mod} 2\pi )$, to a Lebesgue integrable function, $( * )$ is the Fourier series of its sum, and series $( * )$ converges in ${L^1}( - \pi ,\pi )$-norm if and only if ${\lim _{|k| \to \infty }}{c_k}\ln |k| = 0$. In addition, we present new proofs of the theorems by J. Fournier and W. Self [6] and by ČC. V. Stanojević and V. B. Stanojević [10].## References

- Ralph P. Boas Jr.,
*Integrability theorems for trigonometric transforms*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 38, Springer-Verlag New York, Inc., New York, 1967. MR**0219973**, DOI 10.1007/978-3-642-87108-5 - R. Bojanić and Č. V. Stanojević,
*A class of $L^{1}$-convergence*, Trans. Amer. Math. Soc.**269**(1982), no. 2, 677–683. MR**637717**, DOI 10.1090/S0002-9947-1982-0637717-3 - William O. Bray and Časlav V. Stanojević,
*Tauberian $L^{1}$-convergence classes of Fourier series. I*, Trans. Amer. Math. Soc.**275**(1983), no. 1, 59–69. MR**678336**, DOI 10.1090/S0002-9947-1983-0678336-3 - M. Buntinas and N. Tanović-Miller,
*New integrability and $L^1$-convergence classes for even trigonometric series*, Rad. Mat.**6**(1990), no. 1, 149–170 (English, with Serbo-Croatian summary). MR**1069543** - G. A. Fomin,
*A class of trigonometric series*, Mat. Zametki**23**(1978), no. 2, 213–222 (Russian). MR**487218** - John J. F. Fournier and William M. Self,
*Some sufficient conditions for uniform convergence of Fourier series*, J. Math. Anal. Appl.**126**(1987), no. 2, 355–374. MR**900753**, DOI 10.1016/0022-247X(87)90046-1 - John W. Garrett and Časlav V. Stanojević,
*On $L^{1}$ convergence of certain cosine sums*, Bull. Amer. Math. Soc.**82**(1976), no. 1, 129–130. MR**394001**, DOI 10.1090/S0002-9904-1976-13990-0 - Ferenc Móricz,
*On the integrability and $L^1$-convergence of sine series*, Studia Math.**92**(1989), no. 2, 187–200. MR**986947**, DOI 10.4064/sm-92-2-187-200
—, - Časlav V. Stanojević and Vera B. Stanojevic,
*Generalizations of the Sidon-Telyakovskiĭ theorem*, Proc. Amer. Math. Soc.**101**(1987), no. 4, 679–684. MR**911032**, DOI 10.1090/S0002-9939-1987-0911032-2
S. A. Telyakovskii,

*Lebesgue integrability and*${L^1}$

*-convergence of trigonometric series with special coefficients*, Proc. Conf. Approximation Theory, Kecskemét (Hungary), 1990, submitted.

*On a sufficient condition of Sidon for the integrability of trigonometric series*, Mat. Zametki

**14**(1973), 742-748. A. Zygmund,

*Trigonometric series*, Univ. Press, Cambridge, 1959. Chang-Pao Chen, ${L^1}$

*-convergence of Fourier series*, J. Austral. Math. Soc. (Ser. A)

**41**(1986), 376-390.

## Bibliographic Information

- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**113**(1991), 53-64 - MSC: Primary 42A10; Secondary 42A32
- DOI: https://doi.org/10.1090/S0002-9939-1991-1072345-0
- MathSciNet review: 1072345