On the integrability and $L^ 1$-convergence of complex trigonometric series
HTML articles powered by AMS MathViewer
- by Ferenc Móricz
- Proc. Amer. Math. Soc. 113 (1991), 53-64
- DOI: https://doi.org/10.1090/S0002-9939-1991-1072345-0
- PDF | Request permission
Abstract:
We prove that if a weakly even sequence $\{ {c_k}:k = 0, \pm 1, \ldots \}$ of complex numbers is such that for some $p > 1$ we have \[ \sum \limits _{m = 1}^\infty {{2^{m/q}}} {\left ( {\sum \limits _{k = {2^{m - 1}}}^{{2^m} - 1} {{{\left | {\Delta \left ( {{c_k} + {c_{ - k}}} \right )} \right |}^p}} } \right )^{1/p}} < \infty ,\frac {1}{p} + \frac {1}{q} = 1,\] then the symmetric partial sums of the trigonometric series $( * )\sum \nolimits _{k = - \infty }^\infty {{c_k}{e^{ikx}}}$ converge pointwise, except possibly at $x = 0(\operatorname {mod} 2\pi )$, to a Lebesgue integrable function, $( * )$ is the Fourier series of its sum, and series $( * )$ converges in ${L^1}( - \pi ,\pi )$-norm if and only if ${\lim _{|k| \to \infty }}{c_k}\ln |k| = 0$. In addition, we present new proofs of the theorems by J. Fournier and W. Self [6] and by ČC. V. Stanojević and V. B. Stanojević [10].References
- Ralph P. Boas Jr., Integrability theorems for trigonometric transforms, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 38, Springer-Verlag New York, Inc., New York, 1967. MR 0219973, DOI 10.1007/978-3-642-87108-5
- R. Bojanić and Č. V. Stanojević, A class of $L^{1}$-convergence, Trans. Amer. Math. Soc. 269 (1982), no. 2, 677–683. MR 637717, DOI 10.1090/S0002-9947-1982-0637717-3
- William O. Bray and Časlav V. Stanojević, Tauberian $L^{1}$-convergence classes of Fourier series. I, Trans. Amer. Math. Soc. 275 (1983), no. 1, 59–69. MR 678336, DOI 10.1090/S0002-9947-1983-0678336-3
- M. Buntinas and N. Tanović-Miller, New integrability and $L^1$-convergence classes for even trigonometric series, Rad. Mat. 6 (1990), no. 1, 149–170 (English, with Serbo-Croatian summary). MR 1069543
- G. A. Fomin, A class of trigonometric series, Mat. Zametki 23 (1978), no. 2, 213–222 (Russian). MR 487218
- John J. F. Fournier and William M. Self, Some sufficient conditions for uniform convergence of Fourier series, J. Math. Anal. Appl. 126 (1987), no. 2, 355–374. MR 900753, DOI 10.1016/0022-247X(87)90046-1
- John W. Garrett and Časlav V. Stanojević, On $L^{1}$ convergence of certain cosine sums, Bull. Amer. Math. Soc. 82 (1976), no. 1, 129–130. MR 394001, DOI 10.1090/S0002-9904-1976-13990-0
- Ferenc Móricz, On the integrability and $L^1$-convergence of sine series, Studia Math. 92 (1989), no. 2, 187–200. MR 986947, DOI 10.4064/sm-92-2-187-200 —, Lebesgue integrability and ${L^1}$-convergence of trigonometric series with special coefficients, Proc. Conf. Approximation Theory, Kecskemét (Hungary), 1990, submitted.
- Časlav V. Stanojević and Vera B. Stanojevic, Generalizations of the Sidon-Telyakovskiĭ theorem, Proc. Amer. Math. Soc. 101 (1987), no. 4, 679–684. MR 911032, DOI 10.1090/S0002-9939-1987-0911032-2 S. A. Telyakovskii, On a sufficient condition of Sidon for the integrability of trigonometric series, Mat. Zametki 14 (1973), 742-748. A. Zygmund, Trigonometric series, Univ. Press, Cambridge, 1959. Chang-Pao Chen, ${L^1}$-convergence of Fourier series, J. Austral. Math. Soc. (Ser. A) 41 (1986), 376-390.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 53-64
- MSC: Primary 42A10; Secondary 42A32
- DOI: https://doi.org/10.1090/S0002-9939-1991-1072345-0
- MathSciNet review: 1072345