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GEODESICS IN EUCLIDEAN SPACE WITH ANALYTIC OBSTACLE

FELIX ALBRECHT AND I. D. BERG

(Communicated by Jonathan M. Rosenberg)

Abstract. In this note we are concerned with the behavior of geodesies in

Euclidean «-space with a smooth obstacle. Our principal result is that if the

obstacle is locally analytic, that is, locally of the form xn = f(xx, ... , xn_x)

for a real analytic function /, then a geodesic can have, in any segment of

finite arc length, only a finite number of distinct switch points, points on the

boundary that bound a segment not touching the boundary.

This result is certainly false that for a C°° boundary. Indeed, even in E ,

where our result is obvious for analytic boundaries, we can construct a C°°

boundary so that the closure of the set of switch points is of positive measure.

We denote by M the closure of the complement of the obstacle in Euclidean

space En and by S the boundary of the obstacle. Thus M is an «-dimensional

Riemannian manifold-with-boundary embedded in En and S is its boundary

surface.

A geodesic on a Riemannian manifold-with-boundary, M, is defined to be a

locally shortest path in M. In our context the geodesies are easy to visualize; in

E the geodesic is the path of a stretched string with the boundary considered as

the surface of an obstacle around which the string must bend or into which the

string must plunge and end. In [ABB1, ABB2] the properties of these geodesies

are explored in the general setting of a Riemannian manifold-with-boundary.

We describe briefly the elementary properties of the geodesies in M.

A geodesic contacting the boundary in a segment is a geodesic of the bound-

ary; a geodesic segment not touching the boundary is a straight line segment.

A segment on the boundary joins a segment in the ambient space in a dif-

ferentiable join. We call the endpoints on the boundary S of a segment not

touching the boundary switch points. Cluster points of switch points, necessarily

points at which the geodesic contacts the boundary, we call intermittent points

or chatter points. As we will see, even for a C°° surface we can have sets of

positive measure of such chatter points, and so it is reassuring to observe that

the acceleration of a geodesic at a chatter point is 0. Indeed, acceleration is

well defined and bounded everywhere except at the necessarily countable set of

switch points; where it is defined, acceleration is normal and outward-pointing
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or 0 when the geodesic is in contact, and 0 otherwise. Proof of these plausible

statements is supplied in [ABB1].

V. I. Arnol'd has considered geodesies on Euclidean manifolds-with-boundary

from a variational point of view [Ar]. In several works Aleksandrov and Gro-

mov have considered generalized notions of length space, which in particular

apply to Riemannian spaces with Riemannian boundaries, e.g. [Alv. G]. A vari-

ational inequalities approach such as that of Kinderlehrer and Stampacchia [K]

is probably closest in spirit to the current work. In our case, however, we ask

for one-dimensional minimizing manifolds, which in dimension three or more

distinguishes our problem from theirs. In dimension two, where our problem

is trivial, it represents a particularly accessible case of the situation discussed

in Chapter V, Free boundary problems and the coincidence set of the solution,

of [K]. These approaches are mentioned to give the reader some references for

background and are not necessary for our particular problem.

Our theorem on analytic surfaces was announced in [ABB1]; however, both

[ABB1] and [ABB2] showed that even for the C°° case in the presence of posi-

tive measure sets of chatter points a reasonable differential analysis of geodesies

in manifolds-with-boundary was attainable. This current work is part of a gen-

eral investigation of geodesies on manifolds-with-boundary conducted in con-

cert with Stephanie B. Alexander and Richard L. Bishop whose contributions

we gratefully acknowledge.

It is clear that a C°° boundary, as opposed to an analytic boundary, can

allow chattering behavior, and even for n - 2 we can achieve a Cantor set of

intermittent points of positive measure. Further, for n = 2, although it can

be seen that second and higher order derivatives of the boundary curve and

hence second derivatives of the geodesic y are 0 at an intermittent point, we

can arrange the set of positive measure so that any closed segment of y that

contacts S at an interior point of the segment lies properly above the secant

connecting the endpoints of the segment. That is, y genuinely bends when it

touches the boundary.

We describe this construction: We define our boundary as the graph of a C°°

function h obtained from its second derivative h" . We form our Cantor set

of positive measure by extracting a sequence of open intervals {7^} from the

unit interval. On In = (an, bn) we choose h" to be a C°° function such that

h" and all its derivatives are 0 at an and bn . We further choose h" to be

negative, 0, positive, 0, negative on successive nondegenerate subintervals of In

and require both ¡l h" < 0 and that the convex hull of h over In coincide with

h on beginning and ending subintervals of In. We define h" to be 0 on the

complement of {In}. It is clear that by scaling h" of magnitude sufficiently

rapidly decreasing on successive In we can insure that h is C°°. Then the

C°° convex hull of h coincides with our geodesic y , and y has the required

properties.

In the preceding construction we observe that the geodesic y is C°° but
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can easily be made C but not C +1 by an appropriate C°° tailoring of the

joins of the positive to the negative intervals without the intervening 0 intervals.

Indeed, y is typically C1 but not C2.

Our theorem on analytic boundaries is trivial when the ambient space is E .

Indeed, it is clear that for an analytic boundary in E the geodesic cannot

have an accumulation of switch points, since between any two such points there

must be a point of zero curvature. An infinite set of points of curvature zero,

necessarily clustering at a point p , implies that all the derivatives after the first

vanish at the point and hence by analyticity the boundary is a straight line.

This simple argument fails in En for n > 2 because we may have vanishing

directional second derivatives, but in different directions, and so we cannot hope

for so easy a proof. Indeed it is easy to construct a curve lying on an analytic

surface in E except for intervals where it leaves and regains the surface in

a tangential straight line an infinite number of times in a bounded set. This

curve, however, by our theorem cannot be a geodesic. An attempt to construct

such a curve as a putative counterexample is illuminating; the same turns out to

require acceleration with a tangential component, hence cannot be a geodesic.

The following lemma is immediate by virtue of the Cauchy uniqueness the-

orem of [ABB2]. This theorem, however, is not obvious and the particular

application we need here is easy enough to invite a direct proof.

Lemma. Let S contain a straight line segment I originating at p . Let y be a

geodesic on M originating at p with initial tangent in the direction of I. Then

y contains I.

Proof. It is clear that / is a geodesic and so, recalling that a geodesic is only

a locally shortest path, we need show that there is no other. Suppose y is

another geodesic and y and y do not coincide close to p . Assume the normal

to 5" is vertical at p and M lies above 5 near p . Then, since for any e the

only nonzero acceleration applied to y in a small enough neighborhood of p

is within e of vertical and y is subject to 0 acceleration, we see that y lies

almost under y, indeed, within a wedge of vertical halfangle at most 2e . But

since y lies on 5 and the normal is within e of vertical in a neighborhood of

y we have y   beneath the boundary surface S, which is impossible.   D

We are ready to prove that there are no intermittent points for a geodesic in

E" with an analytic obstacle.

Theorem (Absence of intermittent points). Let n> 1 and let M bean (n + 2)-

dimensional analytic manifold-with-boundary embedded in E"+2 and equipped

with the induced Riemannian structure. Denote the boundary surface of M by S

and let y be a geodesic on M parametrized by arc length s, with y(0) = p £ S.

Then there exists an e > 0 such that y has no switch point for 0 < s < e.

Proof. Consider a coordinate system (x, yx, ... , yn, z) = (x, y, z) in

En+ (x, z £ El, y £ E") with the origin at p, the z-axis normal to S at

p, and the x-axis tangent to the given geodesic at p.   With respect to this
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coordinate system, S is defined near the origin by an analytic equation of the

form z = z(x, y). Observe that the (x, z)-plane is the osculating plane of

y at p, as defined in [AA]. Notice also that we can assume, without loss of

generality, that z(x, 0) is not identically zero (otherwise our lemma implies

that the .x-axis lies in the image of y). Thus the equation defining S near p

is of the form
n

(1) z = xNa(x, y)+x^2,yibi(x,y)+ ¿^ yjykcjk(x, y),
¡=1 j,k>l

where N > 2, the functions a, b¡, cJk are analytic and a(0, 0) ^ 0. Choose

the orientation of the coordinate system so that a(0, 0) > 0 and /(0) = d/dx .

Let us briefly sketch the scheme for E before we present the proof. We

can see that along the osculating plane at the initial point, p , of the geodesic,

y, the second derivative must be approximately amxm for some nonzero am

where m > 0. Because the normal is vertical at p the transverse component

of acceleration is so small compared with amxm that we are able to show that

the directional second derivative along the osculating plane to y , which plane

is slightly rotated around the vertical axis but yet more slightly tilted, cannot

change sign. Hence a geodesic leaving the boundary cannot rejoin the boundary

nearby.

The proof of the theorem consists of several steps. For y £ En we write

\y\ = max,^^ \y¡\.

Step 1. There exist n > 0, L > 0 such that for every sufficiently small

neighborhood U of (0,0) in the (n+ 1 )-dimensional (x, y)-plane we have

zxX(xo>yo) £ LX0

for all (x0 ,yQ)£U satisfying xQ > 0, \y0\ < nx*-2.

Proof of Step 1. For U convex and sufficiently small and (x, y) £ U, one has

/"'   ri "

z*¿x'y)= / ■j-zxÁx,ty)dt + zxx(x,Q) = YJylHl(x>y) + xN~2r(x)'
Jo ¡=i

where the Hi are bounded on U and r(0) > 0. The desired inequality follows

immediately.   D

Let (x0, yQ) be a point in the (x, y)-hyperplane close to the origin and let

iel". Consider the two-dimensional plane y - y0 = T(x - x0) and its

intersection with the surface z = z(x, y). Set

f(x) = z(x,y0 + T(x-x0)).

Step 2. There exist f7>0, X > 0, ^>0 such that for every sufficiently

small neighborhood U of (0, 0) in the (x, y)-hyperplane

(d2f/dx2)(x0) > px"~2
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for all  (x0,y0) £ U and  T £ Rn  satisfying x0 > 0,   |y0| < vXq~2, and

\T\<Xx£-2.

Proof of Step 2. One has

if
dx2

(x0) = zxx(x0,y0) + 2j2Tizxy(x0,y0)+  ]T  ï)^^.^,;

Let n and Z, be the constants obtained in Step 1. Our assumptions imply that

—-j(x0) > Lx0     - 2Xx0        sup   2^ \z    (x,y)\
dx (x,y)ÇU~^x       y<

,2    2/V-4 v*   . , ,.
-X   XQ SUP ¿^    \Zy.yiX>y)\

and the desired inequality holds for X and U sufficiently small.   D

Consider a geodesic segment {y(i)|0 < s < e} and its projection F onto the

(x, y)-hyperplane. For e sufficiently small, F is defined by an equation of the

form y = a(x), with a(x) = (ax(x), ... , an(x)).

Step 3. Let n, X, p be the constants defined in Step 2. If e is sufficiently

small, then every point (x0, y0) £ F satisfies

(2) \yQ\ < nx"'2, \(da/dx)(x0)\ < Xx"~2.

Proof of Step 3. Let

y(S)=x(s)^ + ±yi(s)^ + z(s)j-z£S

for some sufficiently small s > 0. The vector

N(s) = zx(x(s), y(s))-^ + ¿ zy(x(s), y(s))^ - ¿

is normal to S at y(s). From (1) it follows that N(s) is of the form

n

x(s)g(x(s), y(s)) + Y^yi(s)hi(x(s), y(s))N(s) =
i=i

0_

dx

+ J2[x(s)kj(x(s), y(s)) + yt(s)lf(x(s), y(s))]j- - j- .
i=i r..l

Since a(0) = <fê(0) = 0 one has y(s) = o(x(s)) and hence N(s) = x(s)V(s) -

d/dz, where the vector V(s) is a linear combination of d/dx and d/dy¡,

I < i < n , and hence is orthogonal to d/dz .

Now let 5 be such that y"(s) exists, with y(s) not necessarily in S. Then

y"(s) - 0 if y(s) $. S and y"(s) - x(s)N(s) otherwise, where x(s) — -z"(s).

In this case

y'lis) = x(s)x(s)(V(s), d/dyt) = x(s)H(s)gi(s),
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where I < i < n and ( ,  ) denotes the scalar product.

Set x(s) = q¡(s) = 0 if y(s) i S and recall that /(0) = d/dx. Notice that

x is increasing, qi is bounded on [0, e] for all i, and z'(0) = z(0) = y'(0) —

y(0) = 0. Furthermore z" (and hence also z') does not change sign on the

interval [0, e]. Indeed, otherwise y"(s0) is directed toward the interior of M

at some point y(s0) £ S and therefore, the boundary segment of the geodesic

containing y(s0) can be shortened by cutting across the interior.

For every s £ [0, e], one gets

(3)        \y(s)\ = /  y"(a)da < Ax(s)      \z"(o)\da = Ax(s)\z'(s)\,
Jo Jo

where A = A(e) —» 0 as £ —> 0. Integrating again one obtains

\y(s)\<Ax(s)\z(s)\.

For y(s) £ S the last inequality and (1) imply \z(s)\ < BxN(s) + C\z(s)\, hence

\z(s)\ < Dx  (s) for some constants B, C, D   (C < 1). Finally

(4) \y(s)\<ExN+\s),

where E = E(e) —<■ 0 as e —> 0. This proves the first inequality (2) for

y(s) £ S. For the second inequality differentiate (1) with respect to s and

substitute (3) and (4) to get \z'(s)\ < FxN~l(s), and hence \y'(s)\ < GxN(s),

where again G = G(e) —► 0 as e —» 0. It is immediate that (2) holds for points

of T corresponding to y(s) £ S.   D

Step 4. If e is sufficiently small the curve F has at most one point that is

the projection of a switch point y(s0) of y for some s0 £ [0, e).

Proof of Step 4. Let (x0, y0) £ F be the projection of a switchpoint y(s0) of y

at which y enters the interior of M for increasing 5 .

The geodesic arc beyond this point (for s > s0 and s - s0 sufficiently small)

is a straight line segment contained in the plane

y-y0 = (da/dx)(x0)(x - x0).

If this line segment meets S again then it does so at a point on the trace

z = f(x) of S in that plane. However, this is impossible by Steps 2 and 3.   D

We should point out a natural question left unanswered. A little thought

will convince the reader that for m > 2 we can construct an w-dimensional

manifold-with-boundary M in Em with analytic boundary surface S and a

point p £ S such that for any e > 0, there is a geodesic starting at p that

leaves S and rejoins 5 in an s neighborhood of p. Indeed for any n we

can construct an analytic surface S and a point p thereon such that for any

e there exists a geodesic starting at p with n distinct intervals in the ambient

space in an e neighborhood of p. We conjecture that for a fixed surface 5

and fixed point p this n is bounded. That is, we have shown that for analytic

S no geodesic has an infinite number of intervals in the ambient space near p ;
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we conjecture that there is a uniform bound, depending on the lowest degree

terms in the Taylor expansion of /, on the number of such intervals.   D
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