Linking and the shadowing property for piecewise monotone maps
HTML articles powered by AMS MathViewer
- by Liang Chen
- Proc. Amer. Math. Soc. 113 (1991), 251-263
- DOI: https://doi.org/10.1090/S0002-9939-1991-1079695-2
- PDF | Request permission
Abstract:
A necessary and sufficient condition for a continuous uniformly piecewise linear map of a compact interval to have the Shadowing Property is that its turning point set be linked.References
- D. V. Anosov, On a class of invariant sets for smooth dynamical systems, Proc. Fifth Internat. Conf. on Nonlinear Oscillations, vol. 2, Math. Inst. Ukrainian Acad. Sci., Kiev 1970, pp. 39-45. (Russian)
- Louis Block and Ethan M. Coven, Topological conjugacy and transitivity for a class of piecewise monotone maps of the interval, Trans. Amer. Math. Soc. 300 (1987), no. 1, 297–306. MR 871677, DOI 10.1090/S0002-9947-1987-0871677-X
- A. M. Blokh, Sensitive mappings of an interval, Uspekhi Mat. Nauk 37 (1982), no. 2(224), 189–190 (Russian). MR 650765
- Rufus Bowen, On Axiom A diffeomorphisms, Regional Conference Series in Mathematics, No. 35, American Mathematical Society, Providence, R.I., 1978. MR 0482842 L. Chen, On the shadowing property for piecewise monotone maps, Ph. D. Thesis, Tufts University, 1990.
- Ethan M. Coven, Ittai Kan, and James A. Yorke, Pseudo-orbit shadowing in the family of tent maps, Trans. Amer. Math. Soc. 308 (1988), no. 1, 227–241. MR 946440, DOI 10.1090/S0002-9947-1988-0946440-2
- Ethan M. Coven and Irene Mulvey, Transitivity and the centre for maps of the circle, Ergodic Theory Dynam. Systems 6 (1986), no. 1, 1–8. MR 837972, DOI 10.1017/S0143385700003254
- John E. Franke and James F. Selgrade, Hyperbolicity and chain recurrence, J. Differential Equations 26 (1977), no. 1, 27–36. MR 467834, DOI 10.1016/0022-0396(77)90096-1
- William Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc. 122 (1966), 368–378. MR 197683, DOI 10.1090/S0002-9947-1966-0197683-5
- Chris Preston, Iterates of piecewise monotone mappings on an interval, Lecture Notes in Mathematics, vol. 1347, Springer-Verlag, Berlin, 1988. MR 969131, DOI 10.1007/BFb0079769
- Peter Walters, On the pseudo-orbit tracing property and its relationship to stability, The structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977) Lecture Notes in Math., vol. 668, Springer, Berlin, 1978, pp. 231–244. MR 518563
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 251-263
- MSC: Primary 58F15; Secondary 26A18
- DOI: https://doi.org/10.1090/S0002-9939-1991-1079695-2
- MathSciNet review: 1079695