On solutions of linear differential equations with real zeros; proof of a conjecture of Hellerstein and Rossi
HTML articles powered by AMS MathViewer
- by Franz Brüggemann
- Proc. Amer. Math. Soc. 113 (1991), 371-379
- DOI: https://doi.org/10.1090/S0002-9939-1991-1057941-9
- PDF | Request permission
Abstract:
We prove the following conjecture that is due to Hellerstein and Rossi: Let $\left \{ {{w_1}, \ldots ,{w_n}} \right \}$ be a fundamental system of \[ Lw = {w^{(n)}} + {a_{n - 1}}(z){w^{(n - 1)}} + \cdots + {a_0}(z)w \equiv 0\] with polynomials ${a_j}(z)(0 \leq j \leq n - 1)$. If each ${w_k}(1 \leq k \leq n)$ has only finitely many nonreal zeros, then there exists a polynomial $q(z)$ such that ${u_k}: = \exp (q(z)){w_k}(1 \leq k \leq n)$ form a fundamental system of a homogeneous linear differential equation with constant coefficients.References
- George D. Birkhoff, Singular points of ordinary linear differential equations, Trans. Amer. Math. Soc. 10 (1909), no. 4, 436–470. MR 1500848, DOI 10.1090/S0002-9947-1909-1500848-5
- D. A. Brannan and W. K. Hayman, Research problems in complex analysis, Bull. London Math. Soc. 21 (1989), no. 1, 1–35. MR 967787, DOI 10.1112/blms/21.1.1 F. Brüggemann, Untersuchungen linearer Differentialgleichungen mit rationalen Koeffizienten im Komplexen, Dissertation, RWTH, Aachen, 1989.
- Franz Brüggemann, On the zeros of fundamental systems of linear differential equations with polynomial coefficients, Complex Variables Theory Appl. 15 (1990), no. 3, 159–166. MR 1074058, DOI 10.1080/17476939008814447
- Volker Dietrich, Newton-Puiseux-Diagramm für Systeme linearer Differentialgleichungen, Complex Variables Theory Appl. 7 (1987), no. 4, 265–296 (German, with English summary). MR 889115, DOI 10.1080/17476938708814204 —, Über die Annahme der möglichen Wachstumsordnungen und Typen bei linearen Differentialgleichungen, Habilitationsschrift, RWTH, Aachen, 1989.
- Günter Frank, Picardsche Ausnahmewerte bei Lösungen linearer Differentialgleichungen, Manuscripta Math. 2 (1970), 181–190 (German, with English summary). MR 264160, DOI 10.1007/BF01155697
- Gary G. Gundersen, On the real zeros of solutions of $f''+A(z)f=0$ where $A(z)$ is entire, Ann. Acad. Sci. Fenn. Ser. A I Math. 11 (1986), no. 2, 275–294. MR 853961, DOI 10.5186/aasfm.1986/1105
- Simon Hellerstein and John Rossi, Zeros of meromorphic solutions of second order linear differential equations, Math. Z. 192 (1986), no. 4, 603–612. MR 847009, DOI 10.1007/BF01162707
- Simon Hellerstein, Li-Chien Shen, and Jack Williamson, Real zeros of derivatives of meromorphic functions and solutions of second order differential equations, Trans. Amer. Math. Soc. 285 (1984), no. 2, 759–776. MR 752502, DOI 10.1090/S0002-9947-1984-0752502-1
- Gerhard Jank and Lutz Volkmann, Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, UTB für Wissenschaft: Grosse Reihe. [UTB for Science: Large Series], Birkhäuser Verlag, Basel, 1985 (German). MR 820202, DOI 10.1007/978-3-0348-6621-7 H. Poincaré, Sur les intégrales des équations linéaires, Acta Math. 8 (1886), 295-344. L. W. Thomé, Zur Theorie der linearen Differentialgleichungen, J. Reine Angew. Math. 75 (1873), 265-291.
- H. L. Turrittin, Asymptotic distribution of zeros for certain exponential sums, Amer. J. Math. 66 (1944), 199–228. MR 10216, DOI 10.2307/2371983
- H. Wittich, Zur Kennzeichnung linearer Differentialgleichungen mit konstanten Koeffizienten, Festband 70. Geburtstag R. Nevanlinna, Springer, Berlin, 1966, pp. 128–134 (German). MR 0229886
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 371-379
- MSC: Primary 34A20; Secondary 30D35, 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1991-1057941-9
- MathSciNet review: 1057941