On noncontinuous chaotic functions
HTML articles powered by AMS MathViewer
- by Jack Ceder
- Proc. Amer. Math. Soc. 113 (1991), 551-555
- DOI: https://doi.org/10.1090/S0002-9939-1991-1062384-8
- PDF | Request permission
Abstract:
A function $f:[0,1] \to [0,1]$ is constructed such that for each two distinct points $x$ and $y$ in $[0,1]$ the sequence $\left \{ {\left | {{f^n}(x) - {f^n}(y)} \right |} \right \}_{n = 0}^\infty$ is dense in $[0,1]$. Here ${f^n}$ is the $n$th iterate of $f$. Moreover a Baire 2 function can be constructed so that the above condition is valid for all distinct $x$ and $y$ in a dense open subset of $[0,1]$.References
- A. M. Bruckner, J. G. Ceder, and T. L. Pearson, On $\omega$-limit sets for various classes of functions, Real Anal. Exchange 15 (1989/90), no. 2, 592–604. MR 1059423
- A. M. Bruckner and Thakyin Hu, On scrambled sets for chaotic functions, Trans. Amer. Math. Soc. 301 (1987), no. 1, 289–297. MR 879574, DOI 10.1090/S0002-9947-1987-0879574-0
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- T. Y. Li and James A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), no. 10, 985–992. MR 385028, DOI 10.2307/2318254
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 551-555
- MSC: Primary 26A18
- DOI: https://doi.org/10.1090/S0002-9939-1991-1062384-8
- MathSciNet review: 1062384