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Abstract. A Geifer function / is a holomorphic function in the unit disc

D = {z: \z\ < 1} such that /(0) = 1 and f(z) + f(w) ± 0 for all z , w in
D . The family G of Geifer functions contains the family P of holomorphic

functions f in D with f(Q) = 1 and Re / > 0 in D. Yamashita has

recently proved that if / is a Geifer function then / € Hp , 0 < p < 1 ,

while log / e BMOA and || log 7IIbmoa - nl^ ■ In tms paper we prove

that the function X(z) = (1 + z)/(l - z) is extremal for a very large class

of problems about integral means in the class G. This result in particular

implies that G c Hp , 0 < p < 1 , and we use it also to obtain a new proof

of a generalization of Yamashita's estimation of the BMOA norm of log /,

fee.

1. Introduction and statement of results

Let D denote the unit disc {z: \z\ < 1} . For p > 0 and g analytic in 7>,

define

0<r< 1,Mp(r,g)=^fjg(re,')\Pdt

Mx(r, g) = max\g(z)\,        0<r<l.

The Hardy space Hp consists of those g analytic in D for which

\\g\\H, = sup M (r, g)<oo.
0<r<\

Let G be the class of functions / analytic in D with /(0) = 1 and having

the Geifer property

(1) f(z) + f(w)^0    for all z, w e D.

The class G was introduced by Geifer [7] and we shall call a member of G a

Geifer function. We refer to [7; 8; 5, pp. 266-267; 9, vol. II, pp. 73-76, 82-83]
for the theory of Geifer functions.
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An important subclass of G is the class P of functions / analytic in D

with /(0) = 1 and Re f(z) > 0 for all z in D. The function

(2) ¿(z) = (l + z)/(l-z)

is extremal for many problems in the classes P and G. It is well known that

PC   f]   H"
0<p<\

(see [4, p. 13]). S. Yamashita has recently proved [11, Theorem 2] that the

same is true for the bigger class G. The first result in this paper asserts that

the function X is extremal for a large class of problems about integral means

in the class G.

Theorem 1. Let f be a Geifer function. Then for each convex function <I> on

R, we have

(3) f ®(log\f(reU)\)dt < f <D(logWre")|)úfí,        0 < r < 1.
J—it J—n

In particular,

(4) Mp(r, f) < Mp(r, A),        0 < r < 1,  0 < p < oo.

Hence f &V[rj<p<{Hp and

(5) IL/V <W\\h>>        0<p<l.

Let BMOA be the space of functions / in 77 whose boundary values have

bounded mean oscillation on dD. There are many characterizations of BMOA-

functions (see [2, 6, 10]). We are interested in the following.

Let 0 < p < oo . A function g analytic in D is in BMOA if and only if

where

UUbmoa = l*(0)| + sup HsJIflP <oo,
" weD

Ittw-A
Yamashita [11, Theorem 3] has proved that if / is a Geifer function then

log / G BMOA and

(6) II log /Hbmoa2 ̂ II lQg ¿Hbmoa2 = «/V2'

Yamashita's proof of (6) is based on the fact that if / is a univalent Geifer

function then / is univalent and hence Theorems 4 and 5 of [8] together with

Danikas' computation of the BMOA2-norm of log(l - z) [3] imply (6) for

any univalent Geifer function. The result for a general Geifer function follows

from the fact that a Geifer function is subordinate to a univalent Geifer func-

tion and that subordination decreases the BMOA2-norm. Let us notice that

this argument works if we consider the BMOA -norms, 0 < p < 2 . We have:
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Let / be a Geifer function. Then

(7) lllOg/ÜBMOA    <Hlog^BMOA   » 0<p<2.
p p

We shall give a new proof of this result based on Theorem 1 and the results

of [8]. This proof applies directly to an arbitrary Geifer function; it does not

need to use the fact that a Geifer function is subordinate to a univalent Geifer

function.

2. Proofs of the results

The proof of Theorem 1 is based on the following elementary observation:

Let f be a Geifer function. For 0 < r < oo, let

R(r) = {te[-n,7i]: re" G f(D)}

and let m(r) denote the Lebesgue measure of R(r). Then the Geifer condition

(1) implies

(8) m(r) <n,        0 < r < oo.

Proof of Theorem 1. Let / be a Geifer function and set R — f(D). Let 7?* be

the circular symmetrization of R (see [1, pp. 141-142]). Then (8) implies

(9) R* c{z: Rez>0},

and then, since X(z) = (1 + z)/(l - z) is a conformai mapping of D onto

{z: Re z > 0} with X(0) = f(0) - 1, Theorem 6 of [1] implies (3) for every

convex increasing function O on R.

Now, it is a simple exercise to show that a convex function on E can be

written as the sum of a convex increasing function on R and a convex decreasing

function on R. Therefore we need to show that (3) holds for every convex

decreasing function $ on 1. To prove this observe that if / G G then 1/feG

and, hence

[n V(-log\f(reH)\)dt < i V(log\Xireu)\)dt,        0 < r < 1,
J— 71 J—71

for every convex increasing function *P on 7?. Notice that \X(re")\ and

l/\X(re")\ are equidistributed on [-71,71] and hence

T Vilog\Xire")\)dt = C «F(-log|A(V')|</i.
J — 71 J—71

Consequently, we have

(10) C V(-lo%\f(reu)\)dt< i" \V(-loë\X(reiï)\)dt,       0<r<l,
J—71 J— 7t

for every convex increasing function T on 1.

Now, if 0(x) is a convex decreasing function on R then O(-x) is a convex

increasing function on R and then (10) shows that

0<r< 1./   ®(log\f(reU)\)dt< [   4>(log\X(re")\)dt,
J— 71 J—71
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This finishes the proof of (3) for any convex function O on R.

The other assertions of Theorem 1 follow easily from (3).

We turn now to study the integral means of log /, f e G. First of all let

us notice that if / G P then log / is subordinate to log X and the Littlewood

subordination theorem [4, p. 10] shows that, for 0 < p < oo,

Mp(r, log f)<Mp(r, log X),        0 < r < 1.

In Theorem 2 we shall prove that this is true for f e G and 0 < p < 2 and we

shall see that (7) follows easily from this result.

Theorem 2. Let f be a Geifer function. Then, for 0 < p < 2,

(11) Mp(r, log f)<Mp(r, log X),        0<r<l,

and

(12) Pos/IIbmoa^Pos^Ubmoa,-

Proof. First let us notice that, for p = 2, (11) follows trivially from Theorem

1. In fact, if we take <D(x) = x2 in (3), we obtain

M2(r, Re log /) < M2(r, Re log X),        0 < r < 1,

which, with Parseval equality [4, p. 54], gives

M2(r, log f) < M2(r, log X),        0<r<l.

In order to obtain ( 11 ) for 0 < p < 2, we use the methods and results of

[8]. Recall [1] that if u is a real valued function defined in D such that, for

0 < r < 1, w(re") is integrable on [-n, n], the function u is defined in

7>+ = 7» n {Im z > 0} by

u*(re") = sup  / u(re's)ds,        0<r<l, 0 < t < n,
\E\=2tJE

where |2s | denotes the Lebesgue measure of E.

Let / G G and 0 < r < 1 . Set

(13) g(z) = log f(rz),        zeD,

(14) h(z) = log X(rz),        zgD.

Then g and h are analytic in D and g(0) = h(0) = 0. According to [1,

Proposition 3], the inequality (3) for every convex increasing function O on R

implies

(15) (Re g)* < (Re h)*    in D+,

while (3) for every convex decreasing function O on 7? gives

(16) (-Re*)*<(-ReA)*    in D+.
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Notice that (15) implies

(17) max Re g(z) < max Re h(z)
z€D z€D

and (16) implies

(18) min Re h(z) < min Re g(z).
ZÇ.D z€D

Moreover, h is univalent and an argument like that used in the proof of

Lemma 1 of [8] shows that h(D) is a Steiner symmetric domain.

Hence, Proposition 6 of [8] implies

[' \g(e")\p dt < C \h(eü)\pdt,        0<p<2,
J—71 J-71

which is equivalent to

Mp(r,log f)<Mp(r,log X),        0<p<2.

To prove (12), observe that (11) implies that if / is a Geifer function then

(19) ||log/||^<||logA||^,        0<p<2.

Now, if / G G, w e D, and

««-'(Sk)/™.
then g e G and hence

(20) Il log ̂ 11^ < Il log A||^,        0<p<2.

But notice that

log g = (log f)w

and then (20) implies that, for 0 < p < 2,

|| log f\\Hp = sup ||(log f)JHp < || log X\\hp = || log A||BMOA .
WED '

This proves (12), finishing the proof of Theorem 2.
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