$\textbf {N}$-compactness and shape
HTML articles powered by AMS MathViewer
- by Manuel Alonso Morón
- Proc. Amer. Math. Soc. 113 (1991), 545-550
- DOI: https://doi.org/10.1090/S0002-9939-1991-1065953-4
- PDF | Request permission
Abstract:
In this paper we prove that two $\mathbb {N}$-compact spaces are homeomorphic if and only if they have the same shape. We also obtain a result concerning shape domination, and finally we give an answer to the problem of components in shape theory.References
- Karol Borsuk, Theory of shape, Monografie Matematyczne, Tom 59, PWN—Polish Scientific Publishers, Warsaw, 1975. MR 0418088
- Jerzy Dydak and Manuel Alonso Morón, Quasicomponents and shape theory, Topology Proc. 13 (1988), no. 1, 73–82. MR 1031970
- Jerzy Dydak and Jack Segal, Shape theory, Lecture Notes in Mathematics, vol. 688, Springer, Berlin, 1978. An introduction. MR 520227, DOI 10.1007/BFb0067572
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779 —, Dimension theory, Polish Scientific, Warszawa, 1978; North-Holland, Amsterdam, Oxford, and New York.
- Horst Herrlich, ${\mathfrak {E}}$-kompakte Räume, Math. Z. 96 (1967), 228–255 (German). MR 205218, DOI 10.1007/BF01124082
- G. Kozlowski and J. Segal, On the shape of $0$-dimensional paracompacta, Fund. Math. 83 (1974), no. 2, 151–154. MR 334142, DOI 10.4064/fm-83-2-151-154
- Sibe Mardešić, Shapes for topological spaces, General Topology and Appl. 3 (1973), 265–282. MR 324638, DOI 10.1016/0016-660X(72)90018-9
- Sibe Mardešić and Jack Segal, Shape theory, North-Holland Mathematical Library, vol. 26, North-Holland Publishing Co., Amsterdam-New York, 1982. The inverse system approach. MR 676973 M. A. Morón, On the Wallman-Frink compactification of $0$-dimensional spaces and shape, preprint.
- S. Mrówka, On universal spaces, Bull. Acad. Polon. Sci. Cl. III. 4 (1956), 479–481. MR 0089401
- S. Mrówka, Recent results on $E$-compact spaces, TOPO 72—general topology and its applications (Proc. Second Pittsburgh Internat. Conf., Pittsburgh, Pa., 1972; dedicated to the memory of Johannes H. de Groot), Lecture Notes in Math., Vol. 378, Springer, Berlin, 1974, pp. 298–301. MR 0362231
- Stanislaw Mrowka, $N$-compactness, metrizability, and covering dimension, Rings of continuous functions (Cincinnati, Ohio, 1982) Lecture Notes in Pure and Appl. Math., vol. 95, Dekker, New York, 1985, pp. 247–275. MR 789276
- R. Engelking and S. Mrówka, On $E$-compact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6 (1958), 429–436. MR 0097042
- Peter Nyikos, Prabir Roy’s space $\Delta$ is not $N$-compact, General Topology and Appl. 3 (1973), 197–210. MR 324657, DOI 10.1016/0016-660X(72)90012-8
- Prabir Roy, Nonequality of dimensions for metric spaces, Trans. Amer. Math. Soc. 134 (1968), 117–132. MR 227960, DOI 10.1090/S0002-9947-1968-0227960-2 R. Walker, The Stone-Čech compactifications, Springer-Verlag, 1974.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 545-550
- MSC: Primary 54C56; Secondary 54D30, 54F45
- DOI: https://doi.org/10.1090/S0002-9939-1991-1065953-4
- MathSciNet review: 1065953