Cofinality in normal almost compact spaces
HTML articles powered by AMS MathViewer
- by W. Fleissner, J. Kulesza and R. Levy
- Proc. Amer. Math. Soc. 113 (1991), 503-511
- DOI: https://doi.org/10.1090/S0002-9939-1991-1072087-1
- PDF | Request permission
Abstract:
A regular space is said to be a NAC space if, given any pair of disjoint closed subsets, one of them is compact. The standard example of a noncompact NAC space is an ordinal space of uncountable cofinality. The cofinality of an arbitrary noncompact NAC space is defined, and the extent to which cofinality in NAC spaces behaves like cofinality of ordinal spaces is discussed.References
- Z. Balogh, A. Dow, D. H. Fremlin, and P. J. Nyikos, Countable tightness and proper forcing, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 1, 295–298. MR 940491, DOI 10.1090/S0273-0979-1988-15649-2
- Peter de Caux, A collectionwise normal weakly $\theta$-refinable Dowker space which is neither irreducible nor realcompact, Topology Proceedings, Vol. I (Conf., Auburn Univ., Auburn, Ala., 1976) Math. Dept., Auburn Univ., Auburn, Ala., 1977, pp. 67–77. MR 0448322
- Eric K. van Douwen, A basically disconnected normal space $\Phi$ with $\beta \Phi -\Phi =1$, Canadian J. Math. 31 (1979), no. 5, 911–914. MR 546947, DOI 10.4153/CJM-1979-086-3
- Kenneth Kunen and Jerry E. Vaughan (eds.), Handbook of set-theoretic topology, North-Holland Publishing Co., Amsterdam, 1984. MR 776619
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- William Fleissner and Ronnie Levy, Ordered spaces all of whose continuous images are normal, Proc. Amer. Math. Soc. 105 (1989), no. 1, 231–235. MR 973846, DOI 10.1090/S0002-9939-1989-0973846-4
- William Fleissner and Ronnie Levy, Stone-Čech remainders which make continuous images normal, Proc. Amer. Math. Soc. 106 (1989), no. 3, 839–842. MR 963571, DOI 10.1090/S0002-9939-1989-0963571-8
- D. H. Fremlin, Perfect pre-images of $\omega _i$ and the PFA, Topology Appl. 29 (1988), no. 2, 151–166. MR 949366, DOI 10.1016/0166-8641(88)90072-7
- S. P. Franklin and M. Rajagopalan, Some examples in topology, Trans. Amer. Math. Soc. 155 (1971), 305–314. MR 283742, DOI 10.1090/S0002-9947-1971-0283742-7
- A. J. Ostaszewski, On countably compact, perfectly normal spaces, J. London Math. Soc. (2) 14 (1976), no. 3, 505–516. MR 438292, DOI 10.1112/jlms/s2-14.3.505
- Teodor C. Przymusiński, Products of normal spaces, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 781–826. MR 776637
- Mary Ellen Rudin, A normal space $X$ for which $X\times I$ is not normal, Fund. Math. 73 (1971/72), no. 2, 179–186. MR 293583, DOI 10.4064/fm-73-2-179-186
- Stevo Todorčević, Partition problems in topology, Contemporary Mathematics, vol. 84, American Mathematical Society, Providence, RI, 1989. MR 980949, DOI 10.1090/conm/084
- Russell C. Walker, The Stone-Čech compactification, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83, Springer-Verlag, New York-Berlin, 1974. MR 0380698
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 503-511
- MSC: Primary 54D30
- DOI: https://doi.org/10.1090/S0002-9939-1991-1072087-1
- MathSciNet review: 1072087