Extensions of isomorphisms between affine algebraic subvarieties of $k^ n$ to automorphisms of $k^ n$
HTML articles powered by AMS MathViewer
- by Shulim Kaliman
- Proc. Amer. Math. Soc. 113 (1991), 325-334
- DOI: https://doi.org/10.1090/S0002-9939-1991-1076575-3
- PDF | Request permission
Abstract:
We derive a criterion, when an isomorphism between two closed affine algebraic subvarieties in an affine space can be extended to an automorphism of the space.References
- Shreeram S. Abhyankar and Tzuong Tsieng Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148–166. MR 379502
- Hyman Bass, Edwin H. Connell, and David Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 287–330. MR 663785, DOI 10.1090/S0273-0979-1982-15032-7
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- Zbigniew Jelonek, The extension of regular and rational embeddings, Math. Ann. 277 (1987), no. 1, 113–120. MR 884649, DOI 10.1007/BF01457281 Sh. Kaliman, On extensions of isomorphisms of affine subvarieties of ${C^n}$ to automorphisms of ${C^n}$, Trans, of the 13-th All-Union School on the Theory of Operators on Functional Spaces, Kuibyshev, 1988, p. 84. (Russian) V. Y. Lin and M. G. Zaidenberg, An irreducible simply connected curve in ${C^2}$ is equivalent to quasihomogeneous curves, Soviet Math. Dokl. 28 (1983), 200-204.
- I. R. Shafarevich, Basic algebraic geometry, Die Grundlehren der mathematischen Wissenschaften, Band 213, Springer-Verlag, New York-Heidelberg, 1974. Translated from the Russian by K. A. Hirsch. MR 0366917, DOI 10.1007/978-3-642-96200-4
- Masakazu Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace $\textbf {C}^{2}$, J. Math. Soc. Japan 26 (1974), 241–257 (French). MR 338423, DOI 10.2969/jmsj/02620241
- Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 325-334
- MSC: Primary 14E09
- DOI: https://doi.org/10.1090/S0002-9939-1991-1076575-3
- MathSciNet review: 1076575