## Extensions of isomorphisms between affine algebraic subvarieties of $k^ n$ to automorphisms of $k^ n$

HTML articles powered by AMS MathViewer

- by Shulim Kaliman
- Proc. Amer. Math. Soc.
**113**(1991), 325-334 - DOI: https://doi.org/10.1090/S0002-9939-1991-1076575-3
- PDF | Request permission

## Abstract:

We derive a criterion, when an isomorphism between two closed affine algebraic subvarieties in an affine space can be extended to an automorphism of the space.## References

- Shreeram S. Abhyankar and Tzuong Tsieng Moh,
*Embeddings of the line in the plane*, J. Reine Angew. Math.**276**(1975), 148–166. MR**379502** - Hyman Bass, Edwin H. Connell, and David Wright,
*The Jacobian conjecture: reduction of degree and formal expansion of the inverse*, Bull. Amer. Math. Soc. (N.S.)**7**(1982), no. 2, 287–330. MR**663785**, DOI 10.1090/S0273-0979-1982-15032-7 - Phillip Griffiths and Joseph Harris,
*Principles of algebraic geometry*, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR**507725** - Robert C. Gunning and Hugo Rossi,
*Analytic functions of several complex variables*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR**0180696** - Zbigniew Jelonek,
*The extension of regular and rational embeddings*, Math. Ann.**277**(1987), no. 1, 113–120. MR**884649**, DOI 10.1007/BF01457281
Sh. Kaliman, - I. R. Shafarevich,
*Basic algebraic geometry*, Die Grundlehren der mathematischen Wissenschaften, Band 213, Springer-Verlag, New York-Heidelberg, 1974. Translated from the Russian by K. A. Hirsch. MR**0366917**, DOI 10.1007/978-3-642-96200-4 - Masakazu Suzuki,
*Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace $\textbf {C}^{2}$*, J. Math. Soc. Japan**26**(1974), 241–257 (French). MR**338423**, DOI 10.2969/jmsj/02620241 - Oscar Zariski and Pierre Samuel,
*Commutative algebra, Volume I*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR**0090581**

*On extensions of isomorphisms of affine subvarieties of*${C^n}$

*to automorphisms of*${C^n}$, Trans, of the 13-th All-Union School on the Theory of Operators on Functional Spaces, Kuibyshev, 1988, p. 84. (Russian) V. Y. Lin and M. G. Zaidenberg,

*An irreducible simply connected curve in*${C^2}$

*is equivalent to quasihomogeneous curves*, Soviet Math. Dokl.

**28**(1983), 200-204.

## Bibliographic Information

- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**113**(1991), 325-334 - MSC: Primary 14E09
- DOI: https://doi.org/10.1090/S0002-9939-1991-1076575-3
- MathSciNet review: 1076575