Markov partitions for the two-dimensional torus
HTML articles powered by AMS MathViewer
- by Mark R. Snavely
- Proc. Amer. Math. Soc. 113 (1991), 517-527
- DOI: https://doi.org/10.1090/S0002-9939-1991-1076579-0
- PDF | Request permission
Abstract:
We examine Markov partitions for hyperbolic automorphisms of ${\mathbb {T}^2}$ in the spirit of Adler, Weiss, and others and give necessary conditions on the transition matrix of a Markov partition for a given automorphism. We give necessary and sufficient conditions for partitions with two connected rectangles.References
- Roy L. Adler and Benjamin Weiss, Similarity of automorphisms of the torus, Memoirs of the American Mathematical Society, No. 98, American Mathematical Society, Providence, R.I., 1970. MR 0257315
- Robert L. Devaney, An introduction to chaotic dynamical systems, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1986. MR 811850
- K. H. Kim and F. W. Roush, Some results on decidability of shift equivalence, J. Combin. Inform. System Sci. 4 (1979), no. 2, 123–146. MR 564188
- Morris Newman, Integral matrices, Pure and Applied Mathematics, Vol. 45, Academic Press, New York-London, 1972. MR 0340283 M. R. Snavely, Markov partitions for hyperbolic automorphisms of the two-dimensional torus, Ph.D. thesis, Northwestern Univ., 1990. M. W. Stafford, Markov partitions for the doubling map, Ph.D. thesis, Northwestern Univ., 1989.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 517-527
- MSC: Primary 58F15; Secondary 28D15
- DOI: https://doi.org/10.1090/S0002-9939-1991-1076579-0
- MathSciNet review: 1076579