UNKNOTTING NUMBER ONE KNOTS ARE PRIME: A NEW PROOF

XINGRU ZHANG

(Communicated by Frederick R. Cohen)

Abstract. An alternative proof for unknotting number one knots being prime is given.

The unknotting number of a knot \(K \subset S^3 \), denoted by \(u(K) \), is the minimum number of crossing changes required to unknot \(K \). Obviously \(u(K) \) is a knot invariant, but surprisingly little is known about it. The following theorem of M. Scharlemann proves a long standing conjecture.

Theorem [S, Theorem]. A knot \(K \subset S^3 \) with \(u(K) = 1 \) is prime.

To prove the above theorem, Scharlemann developed certain combinatorics dealing with planar graphs coming from an intersection of two special planar surfaces. Later in [ST], Scharlemann and Thompson gave another proof of the theorem [ST, Corollary 3.4], that is based on a delicate application of the sutured manifold structure theory. In this note we point out a new proof, applying only some existing results. In fact the proof follows immediately from the following three known lemmas.

Lemma 1 [L, Lemma 1]. Let \(K \) be a knot in \(S^3 \) with \(u(K) = 1 \), and let \(M_K \) be the double cover of \(S^3 \) branched over \(K \). Then \(M_K \) can be obtained by \(n/2 \)-surgery on some knot in \(S^3 \), \(n \) being an odd integer.

Lemma 2 [GL, Theorem 1]. Let \(K \) be a knot in \(S^3 \), and let \(K(m/l) \) denote the manifold obtained by \(m/l \)-surgery on \(K \). Then \(K(m/l) \) is a prime manifold if \(|l| \neq 1 \).

Lemma 3 [KT, Corollary 4]. Let \(K \) be a knot in \(S^3 \). Then the double cover \(M_K \) of \(S^3 \) branched over \(K \) is a prime manifold iff \(K \) is a prime knot.

Proof of Theorem. Since \(u(K) = 1 \), \(M_K \) is a prime manifold by Lemmas 1 and 2. Hence \(K \) is a prime knot by Lemma 3.

The author has learned that a similar approach was pointed out by C. Gordon in a lecture given at Santa Barbara.

Received by the editors June 5, 1990.
1980 Mathematics Subject Classification (1985 Revision). Primary 57M25.

©1991 American Mathematical Society
0002-9939/91 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
REFERENCES

Mathematics Department, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Y4