Unknotting number one knots are prime: a new proof
HTML articles powered by AMS MathViewer
- by Xingru Zhang
- Proc. Amer. Math. Soc. 113 (1991), 611-612
- DOI: https://doi.org/10.1090/S0002-9939-1991-1076582-0
- PDF | Request permission
Abstract:
An alternative proof for unknotting number one knots being prime is given.References
- C. McA. Gordon and J. Luecke, Only integral Dehn surgeries can yield reducible manifolds, Math. Proc. Cambridge Philos. Soc. 102 (1987), no. 1, 97–101. MR 886439, DOI 10.1017/S0305004100067086
- Paik Kee Kim and Jeffrey L. Tollefson, Splitting the PL involutions of nonprime $3$-manifolds, Michigan Math. J. 27 (1980), no. 3, 259–274. MR 584691
- W. B. Raymond Lickorish, The unknotting number of a classical knot, Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982) Contemp. Math., vol. 44, Amer. Math. Soc., Providence, RI, 1985, pp. 117–121. MR 813107, DOI 10.1090/conm/044/813107
- Martin G. Scharlemann, Unknotting number one knots are prime, Invent. Math. 82 (1985), no. 1, 37–55. MR 808108, DOI 10.1007/BF01394778
- Martin Scharlemann and Abigail Thompson, Unknotting number, genus, and companion tori, Math. Ann. 280 (1988), no. 2, 191–205. MR 929535, DOI 10.1007/BF01456051
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 611-612
- MSC: Primary 57M25
- DOI: https://doi.org/10.1090/S0002-9939-1991-1076582-0
- MathSciNet review: 1076582