Unknotting number one knots are prime: a new proof
Author:
Xingru Zhang
Journal:
Proc. Amer. Math. Soc. 113 (1991), 611-612
MSC:
Primary 57M25
DOI:
https://doi.org/10.1090/S0002-9939-1991-1076582-0
MathSciNet review:
1076582
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: An alternative proof for unknotting number one knots being prime is given.
- C. McA. Gordon and J. Luecke, Only integral Dehn surgeries can yield reducible manifolds, Math. Proc. Cambridge Philos. Soc. 102 (1987), no. 1, 97–101. MR 886439, DOI https://doi.org/10.1017/S0305004100067086
- Paik Kee Kim and Jeffrey L. Tollefson, Splitting the PL involutions of nonprime $3$-manifolds, Michigan Math. J. 27 (1980), no. 3, 259–274. MR 584691
- W. B. Raymond Lickorish, The unknotting number of a classical knot, Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982) Contemp. Math., vol. 44, Amer. Math. Soc., Providence, RI, 1985, pp. 117–121. MR 813107, DOI https://doi.org/10.1090/conm/044/813107
- Martin G. Scharlemann, Unknotting number one knots are prime, Invent. Math. 82 (1985), no. 1, 37–55. MR 808108, DOI https://doi.org/10.1007/BF01394778
- Martin Scharlemann and Abigail Thompson, Unknotting number, genus, and companion tori, Math. Ann. 280 (1988), no. 2, 191–205. MR 929535, DOI https://doi.org/10.1007/BF01456051
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57M25
Retrieve articles in all journals with MSC: 57M25
Additional Information
Article copyright:
© Copyright 1991
American Mathematical Society