An integral inequality
HTML articles powered by AMS MathViewer
- by J. Ernest Wilkins
- Proc. Amer. Math. Soc. 113 (1991), 345-353
- DOI: https://doi.org/10.1090/S0002-9939-1991-1086585-8
- PDF | Request permission
Abstract:
We furnish conditions on the functions $p(t),f(t)$, and $g(t)$ that are sufficient for the validity of the inequality, ${\alpha ^2}\delta \geq {\gamma ^2}\beta$, in which $\alpha ,\beta ,\gamma$, and $\delta$ respectively, are the integrals over a measurable set $E$ of $p(t)g(t),p(t){g^2}(t),p(t)f(t)$, and $p(t){f^2}(t)$.References
- Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York; John Wiley & Sons, Inc., New York, 1984. Reprint of the 1972 edition; Selected Government Publications. MR 757537
- Edwin F. Beckenbach and Richard Bellman, Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 30, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961. MR 0158038 G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1934.
- D. S. Mitrinović, Analytic inequalities, Die Grundlehren der mathematischen Wissenschaften, Band 165, Springer-Verlag, New York-Berlin, 1970. In cooperation with P. M. Vasić. MR 0274686
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746 J. E. Wilkins, Jr., Apodization for maximum Strehl criterion and specified Sparrow limit of resolution for coherent illumination, J. Optical Soc. Amer. 67 (1977), 553-557.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 345-353
- MSC: Primary 26D15
- DOI: https://doi.org/10.1090/S0002-9939-1991-1086585-8
- MathSciNet review: 1086585