On firmly nonexpansive mappings
HTML articles powered by AMS MathViewer
- by Ryszard Smarzewski
- Proc. Amer. Math. Soc. 113 (1991), 723-725
- DOI: https://doi.org/10.1090/S0002-9939-1991-1050023-1
- PDF | Request permission
Abstract:
It is shown that any $\lambda$-firmly, $0 < \lambda < 1$ , nonexpansive mapping $T:C \to C$ has a fixed point in $C$ whenever $C$ is a finite union of nonempty, bounded, closed convex subsets of a uniformly convex Banach space.References
- Felix E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1044. MR 187120, DOI 10.1073/pnas.54.4.1041
- Kazimierz Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990. MR 1074005, DOI 10.1017/CBO9780511526152
- Kazimierz Goebel and Simeon Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 83, Marcel Dekker, Inc., New York, 1984. MR 744194
- Dietrich Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258 (German). MR 190718, DOI 10.1002/mana.19650300312
- W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006. MR 189009, DOI 10.2307/2313345
- J. Reinermann and R. Schöneberg, Some results and problems in the fixed point theory for nonexpansive and pseudocontractive mappings in Hilbert-space, Fixed point theory and its applications (Proc. Sem., Dalhousie Univ., Halifax, N.S., 1975) Academic Press, New York, 1976, pp. 187–196. MR 0451052
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 723-725
- MSC: Primary 47H09; Secondary 47H10
- DOI: https://doi.org/10.1090/S0002-9939-1991-1050023-1
- MathSciNet review: 1050023