Computing the integral closure of an affine domain
HTML articles powered by AMS MathViewer
- by Wolmer V. Vasconcelos
- Proc. Amer. Math. Soc. 113 (1991), 633-638
- DOI: https://doi.org/10.1090/S0002-9939-1991-1055780-6
- PDF | Request permission
Abstract:
Let $A = k[{x_1}, \ldots ,{x_n}]/P$ be an affine domain over a field $k$, with $P$ given by a set of generators. We give a method to find the defining ideal of its integral closure $B$ as an affine domain $B = k[{y_1}, \ldots ,{y_m}]/Q$.References
- B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, Recent Trends in Mathematical Systems Theory (N. K. Bose, ed.), D. Reidel, Dordrecht, 1985, pp. 184-232.
- Sam Huckaba and Craig Huneke, Powers of ideals having small analytic deviation, Amer. J. Math. 114 (1992), no. 2, 367–403. MR 1156570, DOI 10.2307/2374708
- Irving Kaplansky, Commutative rings, Revised edition, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0345945
- Ernst Kunz, Kähler differentials, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1986. MR 864975, DOI 10.1007/978-3-663-14074-0
- Joseph Lipman, On the Jacobian ideal of the module of differentials, Proc. Amer. Math. Soc. 21 (1969), 422–426. MR 237511, DOI 10.1090/S0002-9939-1969-0237511-0
- Alessandro Logar, A computational proof of the Noether normalization lemma, Applied algebra, algebraic algorithms and error-correcting codes (Rome, 1988) Lecture Notes in Comput. Sci., vol. 357, Springer, Berlin, 1989, pp. 259–273. MR 1008507, DOI 10.1007/3-540-51083-4_{6}5
- Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
- Pierre Samuel, Anneaux gradués factoriels et modules réflexifs, Bull. Soc. Math. France 92 (1964), 237–249 (French). MR 186702
- A. Seidenberg, Construction of the integral closure of a finite integral domain. II, Proc. Amer. Math. Soc. 52 (1975), 368–372. MR 424783, DOI 10.1090/S0002-9939-1975-0424783-5
- Gabriel Stolzenberg, Constructive normalization of an algebraic variety, Bull. Amer. Math. Soc. 74 (1968), 595–599. MR 224602, DOI 10.1090/S0002-9904-1968-12023-3
- Wolmer V. Vasconcelos, Symmetric algebras and factoriality, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 467–496. MR 1015535, DOI 10.1007/978-1-4612-3660-3_{2}6
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 633-638
- MSC: Primary 13B22; Secondary 13P10
- DOI: https://doi.org/10.1090/S0002-9939-1991-1055780-6
- MathSciNet review: 1055780