Divisibility constraints on degrees of factor maps
HTML articles powered by AMS MathViewer
- by Paul Trow
- Proc. Amer. Math. Soc. 113 (1991), 755-760
- DOI: https://doi.org/10.1090/S0002-9939-1991-1056686-9
- PDF | Request permission
Abstract:
We show that the degree of a finite-to-one factor map $f:{\sum _A} \to {\sum _B}$ between shifts of finite type is constrained by the factors of ${\chi _A}$ and ${\chi _B}$. A special case of these constraints is that if $^*B$, then the degree of $f$ is a unit in $\mathbb {Z}[1/{\det ^*}B]$ (where $^*A$ is the rank of the Jordan form away from 0 of $A$, and ${\det ^*}B$ is the determinant of the Jordan form away from 0 of $B$).References
- Roy L. Adler and Brian Marcus, Topological entropy and equivalence of dynamical systems, Mem. Amer. Math. Soc. 20 (1979), no. 219, iv+84. MR 533691, DOI 10.1090/memo/0219
- Mike Boyle, Constraints on the degree of a sofic homomorphism and the induced multiplication of measures on unstable sets, Israel J. Math. 53 (1986), no. 1, 52–68. MR 861897, DOI 10.1007/BF02772669
- Ethan M. Coven and Michael E. Paul, Sofic systems, Israel J. Math. 20 (1975), no. 2, 165–177. MR 383379, DOI 10.1007/BF02757884
- G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320–375. MR 259881, DOI 10.1007/BF01691062
- Kenneth Hoffman and Ray Kunze, Linear algebra, Prentice-Hall Mathematics Series, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1961. MR 0125849
- Bruce Kitchens, An invariant for continuous factors of Markov shifts, Proc. Amer. Math. Soc. 83 (1981), no. 4, 825–828. MR 630029, DOI 10.1090/S0002-9939-1981-0630029-8
- Bruce Kitchens, Brian Marcus, and Paul Trow, Eventual factor maps and compositions of closing maps, Ergodic Theory Dynam. Systems 11 (1991), no. 1, 85–113. MR 1101086, DOI 10.1017/S0143385700006039
- William Parry and Selim Tuncel, Classification problems in ergodic theory, Statistics: Textbooks and Monographs, vol. 41, Cambridge University Press, Cambridge-New York, 1982. MR 666871
- Paul Trow, Degrees of constant-to-one factor maps, Proc. Amer. Math. Soc. 103 (1988), no. 1, 184–188. MR 938666, DOI 10.1090/S0002-9939-1988-0938666-4
- Paul Trow, Degrees of finite-to-one factor maps, Israel J. Math. 71 (1990), no. 2, 229–238. MR 1088817, DOI 10.1007/BF02811887
- R. F. Williams, Classification of one dimensional attractors, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 341–361. MR 0266227
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 755-760
- MSC: Primary 28D05
- DOI: https://doi.org/10.1090/S0002-9939-1991-1056686-9
- MathSciNet review: 1056686