A cellular wedge in $\textbf {R}^ 3$
HTML articles powered by AMS MathViewer
- by T. B. Rushing and R. B. Sher
- Proc. Amer. Math. Soc. 113 (1991), 895-898
- DOI: https://doi.org/10.1090/S0002-9939-1991-1057745-7
- PDF | Request permission
Abstract:
We construct a cellular wedge $A \vee B \subset {R^3}$ such that $A$ is not cellular.References
- Robert J. Daverman, Problems about finite-dimensional manifolds, Open problems in topology, North-Holland, Amsterdam, 1990, pp.Β 431β455. MR 1078662
- Robert J. Daverman, Decompositions of manifolds, Pure and Applied Mathematics, vol. 124, Academic Press, Inc., Orlando, FL, 1986. MR 872468
- Robert J. Daverman, Embedding phenomena based upon decomposition theory: wild Cantor sets satisfying strong homogeneity properties, Proc. Amer. Math. Soc. 75 (1979), no.Β 1, 177β182. MR 529237, DOI 10.1090/S0002-9939-1979-0529237-7
- R. J. Daverman and J. J. Walsh, Acyclic decompositions of manifolds, Pacific J. Math. 109 (1983), no.Β 2, 291β303. MR 721921
- Ralph H. Fox and Emil Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979β990. MR 27512, DOI 10.2307/1969408 C. H. Giffen, Uncountably many inequivalent nearly tame arcs, Notices Amer. Math. Soc. 10 (1963), 666-667.
- O. G. Harrold Jr. and E. E. Moise, Almost locally polyhedral spheres, Ann. of Math. (2) 57 (1953), 575β578. MR 53504, DOI 10.2307/1969738
- D. R. McMillan Jr., A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327β337. MR 161320, DOI 10.2307/1970548
- D. R. McMillan Jr., Piercing a disk along a cellular set, Proc. Amer. Math. Soc. 19 (1968), 153β157. MR 220266, DOI 10.1090/S0002-9939-1968-0220266-2
- R. B. Sher, Defining subsets of $E^{3}$ by cubes, Pacific J. Math. 25 (1968), 613β619. MR 232373
- Carl D. Sikkema, A duality between certain spheres and arcs in $S^{3}$, Trans. Amer. Math. Soc. 122 (1966), 399β415. MR 199851, DOI 10.1090/S0002-9947-1966-0199851-5
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 895-898
- MSC: Primary 57N60
- DOI: https://doi.org/10.1090/S0002-9939-1991-1057745-7
- MathSciNet review: 1057745