Multi-tuple Shilov boundaries of algebra tensor products

Author:
Toma V. Tonev

Journal:
Proc. Amer. Math. Soc. **113** (1991), 749-753

MSC:
Primary 46J20; Secondary 46M05

DOI:
https://doi.org/10.1090/S0002-9939-1991-1057962-6

MathSciNet review:
1057962

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a short proof of Basener Slodkowski theorem for multi-tuple Shilov boundaries of tensor products of two uniform algebraas.

**[1]**Richard F. Basener,*A generalized Shilov boundary and analytic structure*, Proc. Amer. Math. Soc.**47**(1975), 98–104. MR**352990**, https://doi.org/10.1090/S0002-9939-1975-0352990-9**[2]**-,*Boundaries for product algebras*, preprint, 1975.**[3]**Bruno Kramm,*Nuclearity [resp. Schwartzity] helps to embed holomorphic structure into spectra—a survey*, Proceedings of the conference on Banach algebras and several complex variables (New Haven, Conn., 1983) Contemp. Math., vol. 32, Amer. Math. Soc., Providence, RI, 1984, pp. 143–162. MR**769503**, https://doi.org/10.1090/conm/032/769503**[4]**Donna Kumagai,*Subharmonic functions and uniform algebras*, Proc. Amer. Math. Soc.**78**(1980), no. 1, 23–29. MR**548077**, https://doi.org/10.1090/S0002-9939-1980-0548077-4**[5]**Nessim Sibony,*Multi-dimensional analytic structure in the spectrum of a uniform algebra*, Spaces of analytic functions (Sem. Functional Anal. and Function Theory, Kristiansand, 1975) Springer, Berlin, 1976, pp. 139–165. Lecture Notes in Math., Vol. 512. MR**0632106****[6]**Zbigniew Slodkowski,*Analytic multifunctions: 𝑞-plurisubharmonic functions and uniform algebras*, Proceedings of the conference on Banach algebras and several complex variables (New Haven, Conn., 1983) Contemp. Math., vol. 32, Amer. Math. Soc., Providence, RI, 1984, pp. 243–258. MR**769513**, https://doi.org/10.1090/conm/032/769513**[7]**Zbigniew Slodkowski,*Local maximum property and 𝑞-plurisubharmonic functions in uniform algebras*, J. Math. Anal. Appl.**115**(1986), no. 1, 105–130. MR**835588**, https://doi.org/10.1016/0022-247X(86)90027-2**[8]**Edgar Lee Stout,*The theory of uniform algebras*, Bogden & Quigley, Inc., Tarrytown-on-Hudson, N. Y., 1971. MR**0423083****[9]**T. V. Tonev,*New relations between Sibony-Basener boundaries*, Complex analysis, III (College Park, Md., 1985–86) Lecture Notes in Math., vol. 1277, Springer, Berlin, 1987, pp. 256–262. MR**922339**, https://doi.org/10.1007/BFb0078250**[10]**-,*General complex-analytic structures in uniform algebra spectra*, preprint, Sofia, 1987.**[11]**T. Tonev,*Multi-dimensional analytic structures and uniform algebras*, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 557–561. MR**1128570****[12]**John Wermer,*Banach algebras and several complex variables*, 2nd ed., Springer-Verlag, New York-Heidelberg, 1976. Graduate Texts in Mathematics, No. 35. MR**0394218**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46J20,
46M05

Retrieve articles in all journals with MSC: 46J20, 46M05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1991-1057962-6

Keywords:
Uniform algebra,
algebra spectrum,
Shilov boundary,
multi-tuple Shilov boundaries,
algebra tensor products

Article copyright:
© Copyright 1991
American Mathematical Society