$Z_ p$ actions on spaces of cohomology type $(a,0)$
HTML articles powered by AMS MathViewer
- by Ronald M. Dotzel and Tej B. Singh
- Proc. Amer. Math. Soc. 113 (1991), 875-878
- DOI: https://doi.org/10.1090/S0002-9939-1991-1064902-2
- PDF | Request permission
Abstract:
A space $X$ that has the cohomology of the one-point union ${P^2}(n)V{S^{3n}}$ or ${S^n}V{S^{2n}}V{S^{3n}}$ is said to have cohomology type $(a,0)$. Here we construct examples of free ${Z_p}$ actions ($p$ an odd prime) on certain of these spaces and give a complete description of possible fixed point sets.References
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- I. M. James, Note on cup-products, Proc. Amer. Math. Soc. 8 (1957), 374–383. MR 91467, DOI 10.1090/S0002-9939-1957-0091467-4
- Tej Bahadur Singh, Nonexistence of odd periodic maps on certain spaces without fixed points, Bull. Austral. Math. Soc. 32 (1985), no. 3, 389–397. MR 819571, DOI 10.1017/S0004972700002501
- Hirosi Toda, Note on cohomology ring of certain spaces, Proc. Amer. Math. Soc. 14 (1963), 89–95. MR 150763, DOI 10.1090/S0002-9939-1963-0150763-5
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 875-878
- MSC: Primary 57S17
- DOI: https://doi.org/10.1090/S0002-9939-1991-1064902-2
- MathSciNet review: 1064902