The Jones polynomial of periodic knots
HTML articles powered by AMS MathViewer
- by Yoshiyuki Yokota
- Proc. Amer. Math. Soc. 113 (1991), 889-894
- DOI: https://doi.org/10.1090/S0002-9939-1991-1064908-3
- PDF | Request permission
Abstract:
We give the conditions for the Jones polynomial of periodic knots which are the improvement of Traczyk’s and Murasugi’s results.References
- V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335–388. MR 908150, DOI 10.2307/1971403
- Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–407. MR 899057, DOI 10.1016/0040-9383(87)90009-7
- W. B. R. Lickorish and K. C. Millett, Some evaluations of link polynomials, Comment. Math. Helv. 61 (1986), no. 3, 349–359. MR 860127, DOI 10.1007/BF02621920
- Jun Murakami, The parallel version of polynomial invariants of links, Osaka J. Math. 26 (1989), no. 1, 1–55. MR 991280
- Kunio Murasugi, On periodic knots, Comment. Math. Helv. 46 (1971), 162–174. MR 292060, DOI 10.1007/BF02566836
- Kunio Murasugi, Jones polynomials of periodic links, Pacific J. Math. 131 (1988), no. 2, 319–329. MR 922222
- PawełTraczyk, $10_{101}$ has no period $7$: a criterion for periodic links, Proc. Amer. Math. Soc. 108 (1990), no. 3, 845–846. MR 1031676, DOI 10.1090/S0002-9939-1990-1031676-X
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 889-894
- MSC: Primary 57M25
- DOI: https://doi.org/10.1090/S0002-9939-1991-1064908-3
- MathSciNet review: 1064908