THERE ARE 2^c SYMMETRICALLY CONTINUOUS FUNCTIONS

MIROSLAV CHLEBÍK

(Communicated by Andreas R. Blass)

Abstract. The purpose of this paper is to prove that the power of the set of symmetrically continuous real functions is 2^c (c is the power of the continuum). This surprisingly contrasts with the set of continuous (or Borel) real functions, the power of which is c.

1. Introduction

A function $f: \mathbb{R} \to \mathbb{R}$ is said to be symmetrically continuous at the point $x \in \mathbb{R}$ if

$$\lim_{h \to 0} [f(x+h) - f(x-h)] = 0.$$

This notion originates in the study of the pointwise convergence of trigonometric series. For more information and a rich bibliography, see the survey by L. Larson [5].

In the study of symmetrically continuous functions by itself the results of particular importance were proved by H. Fried [3] and D. Preiss [7]. They answered the questions stated by F. Hausdorff [4] about the set $\mathbb{R} \setminus C(f)$ of points where a symmetrically continuous (on \mathbb{R}) function f can be discontinuous. In fact, the set $\mathbb{R} \setminus C(f)$ is a Lebesgue null set of type F_σ. On the other hand, it can be uncountable.

The results mentioned above imply, in particular, that any symmetrically continuous function is a Lebesgue measurable function with the Baire property. The problem of whether it is Borel measurable or even of Baire class one has been stated several times [5, 6, 2]. The purpose of this paper is to give a negative answer to these questions. In fact, our theorem states that the power of the set of symmetrically continuous functions is 2^c, where c is the power of the continuum.

2. Preliminaries and results

Notation. Let A, B be subsets of \mathbb{R}. The symbols $2A$, $A+B$, and $A-B$ stand for the sets $\{2x: x \in A\}$, $\{(x+y): x \in A \text{ and } y \in B\}$, and $\{(x-y): x \in A \text{ and } y \in B\}$, respectively.

Received by the editors April 13, 1990.

1980 Mathematics Subject Classification (1985 Revision). Primary 26A15.
The notation $A \setminus B$ stands for the set-theoretic difference of A and B. The symbol χ_A means the characteristic function of A and 2^A stands for the power set of A.

The set of centers of symmetry (of local symmetry) is denoted by A^* (A^*_{loc}, respectively), i.e.

$$A^* = \{ x \in \mathbb{R} : \text{whenever } h \in \mathbb{R} \text{ then } (x + h) \in A \iff (x - h) \in A \},$$

$$A^*_{\text{loc}} = \{ x \in \mathbb{R} : \text{there exists } \delta = \delta(x) > 0 \text{ such that whenever } h \in (-\delta, \delta) \text{ then } (x + h) \in A \iff (x - h) \in A \}.$$

For any function $f : \mathbb{R} \to \mathbb{R}$ the symbol $C(f)$ stands for the set of continuity points of A.

Lemma 1. Let $\sum_{n=1}^{\infty} |\rho_n| = \infty$. Then the set

$$\left\{ x \in \mathbb{R} : \sum_{n=1}^{\infty} |\rho_n \cos(nx - \alpha_n)| < \infty \right\}$$

is a (Lebesgue) null set of type \mathcal{F}_σ.

The function

$$f(x) = \lim_{m \to \infty} \left(1 + \sum_{n=1}^{m} |\rho_n \cos(nx - \alpha_n)| \right)^{-1}$$

is symmetrically continuous and upper semicontinuous.

Proof. The first part is the classical Denjoy-Luzin theorem, see e.g. [1, p. 173], the second one is proved in [7].

Lemma 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a symmetrically continuous function and let $A \subseteq \mathbb{R}$ be a set such that whenever $x \in \mathbb{R}$ either $\lim_{y \to x} f(y) = 0$ or $x \in A^{*}_{\text{loc}}$. Then the function $f \cdot \chi_A$ is symmetrically continuous.

Proof. Let $x \in \mathbb{R}$ be arbitrarily chosen. If $\lim_{y \to x} f(y) = 0$ we see that $\lim_{y \to x} f \cdot \chi_A(y) = 0$ and hence $f \cdot \chi_A$ is symmetrically continuous at x. If $x \in A^{*}_{\text{loc}}$ we can choose a positive number $\delta = \delta(x)$ such that

$$\chi_A(x + h) = \chi_A(x - h) \text{ whenever } h \in (-\delta, \delta).$$

For such an h we have

$$f \cdot \chi_A(x + h) - f \cdot \chi_A(x - h) = [f(x + h) - f(x - h)] \cdot \chi_A(x + h)$$

and obviously $f \cdot \chi_A$ is symmetrically continuous at x.

Lemma 3. Let $E \subseteq \mathbb{R}$ be an additive subgroup of \mathbb{R} and let $G \subseteq E$ be a nonempty set such that the following implication holds:

$$x \in G \text{ and } y \in G \text{ and } x \neq y \text{ imply } \frac{1}{2}(x + y) \not\in E.$$

Then the following assertions are true:

(i) $2E + H_1 \neq 2E + H_2$ whenever $\emptyset \neq H_i \subseteq G(i = 1, 2)$ with $H_1 \neq H_2$ and

(ii) $2E + H \subseteq E \subseteq [2E + H]^*$ whenever $\emptyset \neq H \subseteq G$.
Proof. (i) We assume to the contrary that we can find two nonempty subsets \(H_1, H_2 \) of \(G \) such that \(2E + H_1 = 2E + H_2 \). Then for a fixed \(x \in H_1 \setminus H_2 \) we have
\[
x \in 2E + \{x\} \subseteq 2E + H_1 = 2E + H_2
\]
and hence there exists \(y \in H_2 \) such that \(x \in 2E + \{y\} \). Obviously \(y \neq x \) and \(\frac{1}{2}(x + y) \in E + \{y\} = E \) which contradicts the assumption made about \(E \) and \(G \).

(ii) Let \(H \) be a nonempty subset of \(G \). The first inclusion is trivial. To prove the second one we fix \(x \in E \) and \(h \in \mathbb{R} \) such that
\[
(x + h) \in 2E + H.
\]
Then we have
\[
(x - h) = [2x - (x + h)] \in [2E - (2E + H)] = 2E + H^*.
\]

Theorem 1. The power of the set of symmetrically continuous functions \(f: \mathbb{R} \to \mathbb{R} \) is \(2^c \).

Proof. Let \(f: \mathbb{R} \to [0, 1] \) be defined by formula
\[
f(x) = \lim_{m \to \infty} \left(1 + \sum_{n=1}^{m} \frac{1}{n} \sin 3^n x \right)^{-1}
\]
for every \(x \in \mathbb{R} \). We put
\[
E = \left\{ x \in \mathbb{R}: \sum_{n=1}^{\infty} \frac{1}{n} \sin 3^n x < \infty \right\} = \{ x \in \mathbb{R}: f(x) \neq 0 \}.
\]
According to Lemma 1, \(f \) is symmetrically continuous, upper semicontinuous and \(E \) is a (Lebesgue) null set. Obviously, \(f \) is continuous at every point of \(\mathbb{R} \setminus E \). Moreover, \(E \) is an additive subgroup of \(\mathbb{R} \) since \(0 \in E \) and
\[
|\sin k(x \pm y)| \leq |\sin kx| + |\sin ky| \quad \text{whenever} \ x, y, k \in \mathbb{R}.
\]
Let \(\mathcal{H} \) be a basis of the linear space \(\mathbb{R} \) over the field of rationals \(\mathbb{Q} \) satisfying \(1 \in \mathcal{H} \subseteq (0, 1] \).

We put \(\Lambda = \mathcal{H} \setminus \{1\} \). Obviously the power of \(\Lambda \) is \(c \). For any \(\alpha \in \Lambda \) we define the infinite zero-one sequence \(\{\mu_{\alpha, k}\}_{k=1}^{\infty} \) by the (unique) expansion
\[
\alpha = \sum_{k=1}^{\infty} \mu_{\alpha, k} 2^{-k}.
\]
For any pair \(\alpha, \beta \in \Lambda \) with \(\alpha \neq \beta \) we see that \((\alpha - \beta) \notin \mathbb{Q} \) and therefore, we can define the infinite strictly increasing sequence \(\{t_{\alpha, \beta, r}\}_{r=1}^{\infty} \) of all natural numbers \(t \) with the property \(\mu_{\alpha, t} \neq \mu_{\beta, t} \). We put \(s_{\alpha, \beta, r} = t_{\alpha, \beta, 2r} \) and then we see that
\[
\sum_{k=1}^{s_{\alpha, \beta, r}-1} (\mu_{\alpha, k} + \mu_{\beta, k}) \equiv 1 \pmod{2} \quad (1)
\]
and

\[(2) \quad (\mu_{\alpha,s_{\beta,r}} + \mu_{\beta,s_{\alpha,r}}) = 1\]

for every \(r = 1, 2, 3, \ldots \).

For any \(\alpha \in \Lambda \) we define the real number \(a_\alpha \) by the formula

\[a_\alpha = \pi \cdot \left[\sum_{k=1}^{\infty} \mu_{\alpha,k} \cdot 3^{-(2^k+1)} \right]\]

and we put

\[G = \{a_\alpha : \alpha \in \Lambda\}.

It is easy to see that \(a_\alpha \neq a_\beta \) whenever \(\alpha, \beta \in \Lambda \) with \(\alpha \neq \beta \). In particular, the power of \(G \) is \(\mathcal{c} \).

We shall prove that

\[(3) \quad G \subseteq E\]

and

\[(4) \quad \frac{1}{2}(x+y) \notin E \quad \text{whenever} \quad x, y \in G \text{ with } x \neq y.\]

We first assume that (3) and (4) are proved. For every nonempty set \(H \subseteq G \) we define the function \(f_H : \mathbb{R} \rightarrow [0, 1] \) by the formula

\[f_H = f \cdot \chi_{(2E+H)}.\]

According to Lemma 2 and Lemma 3(ii) the function \(f_H \) is symmetrically continuous. Moreover

\[{\{x \in \mathbb{R} : f_H(x) \neq 0\} = 2E + H}\]

and therefore, by Lemma 3(i) \(f_{H_1} \neq f_{H_2} \) holds whenever \(\emptyset \neq H_i \subseteq G \) \((i = 1, 2) \) with \(H_1 \neq H_2 \). Hence the set

\[{\{f_H : \emptyset \neq H \subseteq G\}\}

is a set of power \(2^c \) and any of its elements is a symmetrically continuous function. This easily implies our theorem.

Now it is sufficient to prove (3) and (4). To prove (3) we fix an arbitrary \(a_\alpha \in G \). Let \(s, n \) be positive integers such that \(2^{s-1} < n \leq 2^s \). Then

\[3^n a_\alpha / \pi = 3^n \sum_{k=1}^{\infty} \mu_{\alpha,k} \cdot 3^{-(2^k+1)} \equiv c(s, n) \quad (\text{mod } 1),\]

where

\[c(s, n) = 3^n \sum_{k=s}^{\infty} \mu_{\alpha,k} \cdot 3^{-(2^k+1)} = 3^{n-2^s} \sum_{k=s}^{\infty} \mu_{\alpha,k} \cdot 3^{-(2^k-2^s+1)}.

The following inequalities are obvious

\[0 \leq c(s, n) < 3^{n-2^s} \sum_{l=1}^{\infty} 3^{-l} = \frac{1}{2} 3^{n-2^s} \quad \left(\leq \frac{1}{2} \right)\]
and therefore,
\[|\sin 3^n a| = |\sin \pi c(n, s)| \leq \pi c(n, s) < \frac{\pi}{3} 3^{n-2}. \]

It easily implies that the inequalities
\[\sum_{n=2s+1}^{2s+2} \frac{1}{n} |\sin 3^n a| \leq 2^{1-s} \sum_{n=2s+1}^{2s+2} |\sin 3^n a| < 3 \pi 2^{-s-1} \]
hold for every positive integer \(s \). Therefore,
\[\sum_{n=1}^{\infty} \frac{1}{n} |\sin 3^n a| < 1 + 3 \pi \sum_{s=1}^{\infty} 2^{-s-1} = 1 + \frac{3}{2} \pi < \infty \]
and hence \(a \in E \).

To prove (4) we fix \(\alpha, \beta \in \Lambda \) with \(\alpha \neq \beta \) and we put
\[b = \frac{1}{2} (a_\alpha + a_\beta). \]

We shall prove that \(b \not\in E \). Let \(s, n \) be positive integers such that
\[2^{s-1} < n \leq 2^s. \]

Then
\[3^n \frac{2b}{\pi} = 3^n \sum_{k=1}^{\infty} (\mu_\alpha,k + \mu_\beta,k) \cdot 3^{-(2^k+1)} \equiv P(s) + Q(s, n) \quad (\text{mod } 2), \]
where
\[P(s) = \sum_{k=1}^{s-1} (\mu_\alpha,k + \mu_\beta,k), \]
\[Q(s, n) = 3^n \sum_{k=s}^{\infty} (\mu_\alpha,k + \mu_\beta,k) \cdot 3^{-(2^k+1)}. \]

We fix any pair of positive integers \(r, n \) such that
\[2^{s-r-1} < n \leq 2^{s-r}. \]

Recalling (2) we see that the following relations hold:
\[0 < Q(s, \beta, r, n) \]
\[\leq 3^{n-2^{s-r}} \left[\frac{1}{3} + \sum_{k=s-r+1}^{\infty} 2 \cdot 3^{2^{s-r}-(2^k+1)} \right] \]
\[< 3^{n-2^{s-r}} \left[\frac{1}{3} + \sum_{l=2}^{\infty} 2 \cdot 3^{-l} \right] = \frac{2}{3} 3^{n-2^{s-r}} \leq \frac{2}{3}. \]

From (1) we see that \(P(s, \beta, r) \equiv 1 \) (mod 2) and hence by (5)
\[3^n b = \frac{\pi}{2} \left(3^n \frac{2b}{\pi} \right) \equiv \frac{\pi}{2} \left[1 + Q(s, \beta, r, n) \right] \quad (\text{mod } \pi). \]
By (6) we see that
\[\frac{\pi}{2} [1 + Q(s, \beta, r, n)] \in \left(\frac{\pi}{2}, \frac{5\pi}{6} \right) \]
and from (7) and (8) we easily get that \(|\sin 3^n b| > \frac{1}{2}|. Therefore

\[\sum_{n=2^s, \beta, r^{-1}+1}^{2^s, \beta, 2^n} \frac{1}{n} |\sin 3^n b| > 2^{-s} \sin b \sum_{n=2^s, \beta, r^{-1}+1}^{2^s, \beta, 2^n} \frac{1}{2} = \frac{1}{4} \]
holds for any positive integer \(r \) and

\[\sum_{n=1}^{\infty} \frac{1}{n} |\sin 3^n b| = \infty. \]

Hence \(b \notin E \) and (4) holds. This completes the proof.

Corollary 1. There exists a symmetrically continuous function \(f: \mathbb{R} \to \mathbb{R} \) that is not Borel measurable.

Proof. The power of the set of all Borel measurable functions \(f: \mathbb{R} \to \mathbb{R} \) is \(c \).

References

Institute of Applied Mathematics, Comenius University, Bratislava, Czechoslovakia

Current address: Department of Mathematics, Comenius University, 84215 Bratislava, Czechoslovakia