There are $2^ c$ symmetrically continuous functions
HTML articles powered by AMS MathViewer
- by Miroslav Chlebík
- Proc. Amer. Math. Soc. 113 (1991), 683-688
- DOI: https://doi.org/10.1090/S0002-9939-1991-1069685-8
- PDF | Request permission
Abstract:
The purpose of this paper is to prove that the power of the set of symmetrically continuous real functions is ${2^c}$ ($c$ is the power of the continuum). This surprisingly contrasts with the set of continuous (or Borel) real functions, the power of which is $c$.References
- N. K. Bari, Trigonometrical series, Moscow, 1961. (Russian)
- M. J. Evans and L. Larson, The continuity of symmetric and smooth functions, Acta Math. Hungar. 43 (1984), no. 3-4, 251–257. MR 733857, DOI 10.1007/BF01958022 H. Fried, Über die symmetrische Stetigkeit von Funktionen, Fund. Math. 29 (1937), 134-137. F. Hausdorff, Problem #62, Fund. Math. 25 (1935), 578.
- Lee Larson, Symmetric real analysis: a survey, Real Anal. Exchange 9 (1983/84), no. 1, 154–178. MR 742782 —, Query #170, Real Anal. Exchange 4 (1983-84), 29.
- David Preiss, A note on symmetrically continuous functions, Časopis Pěst. Mat. 96 (1971), 262–264, 300 (English, with Czech summary). MR 0306411
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 683-688
- MSC: Primary 26A15; Secondary 26A21
- DOI: https://doi.org/10.1090/S0002-9939-1991-1069685-8
- MathSciNet review: 1069685