Schwarzian derivatives and zeros of solutions to second order linear differential equations
HTML articles powered by AMS MathViewer
- by A. Hinkkanen and John Rossi
- Proc. Amer. Math. Soc. 113 (1991), 741-746
- DOI: https://doi.org/10.1090/S0002-9939-1991-1069689-5
- PDF | Request permission
Abstract:
Let $A$ be entire. Suppose that there exists an unbounded quasidisk $D$ such that $A$ is sufficiently small in $D$. We prove that then any nontrivial solution to $y'' + Ay = 0$ has at most one zero in $D$. We show that if $A = Q\exp P$ where $P$ and $Q$ are polynomials, one can usually take $D$ to be an angle of opening $\pi /n$ where $n$ is the degree of $P$.References
- Lars V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291–301. MR 154978, DOI 10.1007/BF02391816
- Steven B. Bank, On determining the location of complex zeros of solutions of certain linear differential equations, Ann. Mat. Pura Appl. (4) 151 (1988), 67–96. MR 964503, DOI 10.1007/BF01762788
- F. W. Gehring, Univalent functions and the Schwarzian derivative, Comment. Math. Helv. 52 (1977), no. 4, 561–572. MR 457701, DOI 10.1007/BF02567390
- Simon Hellerstein and John Rossi, On the distribution of zeros of solutions of second-order differential equations, Complex Variables Theory Appl. 13 (1989), no. 1-2, 99–109. MR 1029359, DOI 10.1080/17476938908814381
- Matti Lehtinen, On the inner radius of univalency for noncircular domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 45–47. MR 595176, DOI 10.5186/aasfm.1980.0515
- Matti Lehtinen, Estimates of the inner radius of univalency of domains bounded by conic sections, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 349–353. MR 802496, DOI 10.5186/aasfm.1985.1038
- Olli Lehto, Remarks on Nehari’s theorem about the Schwarzian derivative and schlicht functions, J. Analyse Math. 36 (1979), 184–190 (1980). MR 581811, DOI 10.1007/BF02798778
- Olli Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR 867407, DOI 10.1007/978-1-4613-8652-0
- Zeev Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545–551. MR 29999, DOI 10.1090/S0002-9904-1949-09241-8
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 741-746
- MSC: Primary 34C10; Secondary 30D05, 34A20
- DOI: https://doi.org/10.1090/S0002-9939-1991-1069689-5
- MathSciNet review: 1069689