Nonrealizability of subalgebras of $\mathfrak {A}^*$
HTML articles powered by AMS MathViewer
- by Stanley O. Kochman
- Proc. Amer. Math. Soc. 113 (1991), 867-870
- DOI: https://doi.org/10.1090/S0002-9939-1991-1070521-4
- PDF | Request permission
Abstract:
At the prime two, the dual of the Steenrod algebra is a polynomial algebra in generators ${\xi _n},n \geq 1$. The Eilenberg-Mac Lane spectrum $K({Z_2})$ has homology ${Z_2}[{\xi _n}|n \geq 1]$, the Brown-Peterson spectrum BP has homology ${Z_2}[\xi _n^2|n \geq 1]$, and the symplectic Thom spectrum MSp has homology ${Z_2}[\xi _n^4|n \geq 1] \otimes \mathfrak {S}$. In this paper, we show that there is no spectrum ${B_k}$ with ${H_*}{B_k} = {Z_2}[\xi _n^{{2^k}}|n \geq 1]$ for $k \geq 2$.References
- J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20โ104. MR 141119, DOI 10.2307/1970147
- Edgar H. Brown Jr. and Franklin P. Peterson, A spectrum whose $Z_{p}$ cohomology is the algebra of reduced $p^{th}$ powers, Topology 5 (1966), 149โ154. MR 192494, DOI 10.1016/0040-9383(66)90015-2
- Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
- Stanley O. Kochman, A chain functor for bordism, Trans. Amer. Math. Soc. 239 (1978), 167โ196. MR 488031, DOI 10.1090/S0002-9947-1978-0488031-X
- Stanley O. Kochman, The symplectic cobordism ring. I, Mem. Amer. Math. Soc. 24 (1980), no.ย 228, ix+206. MR 556609, DOI 10.1090/memo/0228 โ, The symplectic Adams-Novikov spectral sequence for spheres, submitted.
- Arunas Liulevicius, Notes on homotopy of Thom spectra, Amer. J. Math. 86 (1964), 1โ16. MR 166787, DOI 10.2307/2373032
- J. Peter May, The cohomology of restricted Lie algebras and of Hopf algebras, Bull. Amer. Math. Soc. 71 (1965), 372โ377. MR 185595, DOI 10.1090/S0002-9904-1965-11300-3
- J. P. May, The cohomology of restricted Lie algebras and of Hopf algebras, J. Algebra 3 (1966), 123โ146. MR 193126, DOI 10.1016/0021-8693(66)90009-3
- John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211โ264. MR 174052, DOI 10.2307/1970615
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 867-870
- MSC: Primary 55P42; Secondary 55N22, 55S10, 55T15
- DOI: https://doi.org/10.1090/S0002-9939-1991-1070521-4
- MathSciNet review: 1070521