A note on the propagators of second order linear differential equations in Hilbert spaces
HTML articles powered by AMS MathViewer
- by Tijun Xio and Jin Liang
- Proc. Amer. Math. Soc. 113 (1991), 663-667
- DOI: https://doi.org/10.1090/S0002-9939-1991-1072350-4
- PDF | Request permission
Abstract:
The paper is concerned with the growth properties at infinity of the propagators $C( \cdot ),S( \cdot )$ of the equation $u''(t) + Bu’(t) + Au(t) = 0$, where $A,B$ are densely defined closed linear operators in a Hilbert space. We define ${\omega _0}(A,B) = \max \{ {\overline {\lim } _{t \to \infty }}{t^{ - 1}}\ln \left \| {C(t)} \right \|,{\overline {\lim } _{t \to \infty }}{t^{ - 1}}\ln \left \| {S’(t)} \right \|\}$, and give a criterion to judge whether ${\omega _0}(A,B) \leq b$ for a fixed $b \in R$.References
- H. O. Fattorini, Second order linear differential equations in Banach spaces, North-Holland Mathematics Studies, vol. 108, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 99. MR 797071
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
- Tijun Xio and Liang Jin, On complete second order linear differential equations in Banach spaces, Pacific J. Math. 142 (1990), no. 1, 175–195. MR 1038735
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 663-667
- MSC: Primary 47D09; Secondary 34G10, 34K30, 35R20
- DOI: https://doi.org/10.1090/S0002-9939-1991-1072350-4
- MathSciNet review: 1072350