On intermediate differentiability of Lipschitz functions on certain Banach spaces
HTML articles powered by AMS MathViewer
- by M. Fabián and D. Preiss
- Proc. Amer. Math. Soc. 113 (1991), 733-740
- DOI: https://doi.org/10.1090/S0002-9939-1991-1074753-0
- PDF | Request permission
Abstract:
A real-valued function $f$ defined on a Banach space $X$ is said to be intermediately differentiable at $x \in X$ if there is $\xi \in {X^*}$ such that for every $h \in X$ the value $\left \langle {\xi ,h} \right \rangle$ lies between the upper and lower derivatives of $f$ at $x$ in the direction $h$. We show that if $Y$ contains a dense continuous linear image of an Asplund space and $X$ is a subspace of $Y$, then every locally Lipschitz function on $X$ is generically intermediately differentiable.References
- Richard D. Bourgin, Geometric aspects of convex sets with the Radon-Nikodým property, Lecture Notes in Mathematics, vol. 993, Springer-Verlag, Berlin, 1983. MR 704815, DOI 10.1007/BFb0069321
- Jens Peter Reus Christensen and Petar Stojanov Kenderov, Dense strong continuity of mappings and the Radon-Nikodým property, Math. Scand. 54 (1984), no. 1, 70–78. MR 753064, DOI 10.7146/math.scand.a-12041
- Frank H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247–262. MR 367131, DOI 10.1090/S0002-9947-1975-0367131-6
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- M. Fabián and N. V. Zhivkov, A characterization of Asplund spaces with the help of local $\epsilon$-supports of Ekeland and Lebourg, C. R. Acad. Bulgare Sci. 38 (1985), no. 6, 671–674. MR 805439
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), no. 4, 735–750. MR 390721
- David Preiss, Gâteaux differentiable functions are somewhere Fréchet differentiable, Rend. Circ. Mat. Palermo (2) 33 (1984), no. 1, 122–133. MR 743214, DOI 10.1007/BF02844417
- D. Preiss, Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal. 91 (1990), no. 2, 312–345. MR 1058975, DOI 10.1016/0022-1236(90)90147-D
- Haskell P. Rosenthal, The heredity problem for weakly compactly generated Banach spaces, Compositio Math. 28 (1974), 83–111. MR 417762
- Charles Stegall, The Radon-Nikodým property in conjugate Banach spaces. II, Trans. Amer. Math. Soc. 264 (1981), no. 2, 507–519. MR 603779, DOI 10.1090/S0002-9947-1981-0603779-1
- Michel Talagrand, Espaces de Banach faiblement ${\cal K}$-analytiques, Ann. of Math. (2) 110 (1979), no. 3, 407–438 (French). MR 554378, DOI 10.2307/1971232
- L. Vašák, On one generalization of weakly compactly generated Banach spaces, Studia Math. 70 (1981), no. 1, 11–19. MR 646957, DOI 10.4064/sm-70-1-11-19
- N. V. Živkov, Generic Gâteaux differentiability of locally Lipschitzian functions, Constructive function theory ’81 (Varna, 1981) Publ. House Bulgar. Acad. Sci., Sofia, 1983, pp. 590–594. MR 729932
- N. V. Zhivkov, Generic Gâteaux differentiability of directionally differentiable mappings, Rev. Roumaine Math. Pures Appl. 32 (1987), no. 2, 179–188. MR 889011
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 733-740
- MSC: Primary 46G05; Secondary 26E15, 46B20, 58C20
- DOI: https://doi.org/10.1090/S0002-9939-1991-1074753-0
- MathSciNet review: 1074753