Maximal functions, $A_ \infty$-measures and quasiconformal maps
HTML articles powered by AMS MathViewer
- by Susan G. Staples
- Proc. Amer. Math. Soc. 113 (1991), 689-700
- DOI: https://doi.org/10.1090/S0002-9939-1991-1075951-2
- PDF | Request permission
Abstract:
In the study of quasiconformal maps, one commonly asks, "Which classes of maps or measures are preserved under quasiconformal maps?", and conversely, "When does the said preservation property imply the quasiconformality of the map?". These questions have been studied by Reimann and Uchiyama with respect to the classes of BMO functions, maximal functions, and ${A_\infty }$-measures. But, both authors assumed additional analytic hypotheses to establish the quasiconformality of the map. In this paper we utilize the geometry of quasiconformal maps to eliminate these auxiliary hypotheses and present results in the cases of maximal functions and ${A_\infty }$-measures.References
- Kari Astala, A remark on quasiconformal mappings and BMO-functions, Michigan Math. J. 30 (1983), no. 2, 209–212. MR 718266, DOI 10.1307/mmj/1029002851
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- F. W. Gehring, The $L^{p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. MR 402038, DOI 10.1007/BF02392268
- F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979), 50–74 (1980). MR 581801, DOI 10.1007/BF02798768
- Peter W. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), no. 1, 41–66. MR 554817, DOI 10.1512/iumj.1980.29.29005
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- Jürgen Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577–591. MR 159138, DOI 10.1002/cpa.3160140329
- H. M. Reimann, Functions of bounded mean oscillation and quasiconformal mappings, Comment. Math. Helv. 49 (1974), 260–276. MR 361067, DOI 10.1007/BF02566734
- Hans Martin Reimann and Thomas Rychener, Funktionen beschränkter mittlerer Oszillation, Lecture Notes in Mathematics, Vol. 487, Springer-Verlag, Berlin-New York, 1975 (German). MR 0511997
- Susan G. Staples, $L^p$-averaging domains and the Poincaré inequality, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 1, 103–127. MR 997974, DOI 10.5186/aasfm.1989.1429
- Akihito Uchiyama, Weight functions of the class $(A_{\infty })$ and quasi-conformal mappings, Proc. Japan Acad. 51 (1975), no. suppl., 811–814. MR 442226
- Jussi Väisälä, On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A I 298 (1961), 36. MR 0140685
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 689-700
- MSC: Primary 30C65; Secondary 42B25
- DOI: https://doi.org/10.1090/S0002-9939-1991-1075951-2
- MathSciNet review: 1075951