“Lebesgue measure” on $\textbf {R}^ \infty$
HTML articles powered by AMS MathViewer
- by Richard Baker
- Proc. Amer. Math. Soc. 113 (1991), 1023-1029
- DOI: https://doi.org/10.1090/S0002-9939-1991-1062827-X
- PDF | Request permission
Abstract:
We construct a translation invariant Borel measure $\lambda$ on ${{\mathbf {R}}^\infty } = \prod _{i = 1}^\infty {\mathbf {R}}$ such that for any infinite-dimensional rectangle $R = \prod _{i = 1}^\infty ({a_i},{b_i}), - \infty < {a_i} \leq {b_i} < + \infty$, if $0 \leq \prod _{i = 1}^\infty ({b_i} - {a_i}) < + \infty$, then $\lambda (R) = \prod _{i = 1}^\infty ({b_i} - {a_i})$. Because ${{\mathbf {R}}^\infty }$ is an infinite-dimensional locally convex topological vector space, the measure $\lambda$ can not be $\sigma$-finite.References
- C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
- Y. Yamasaki, Measures on infinite-dimensional spaces, Series in Pure Mathematics, vol. 5, World Scientific Publishing Co., Singapore, 1985. MR 999137, DOI 10.1142/0162
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 1023-1029
- MSC: Primary 46G12; Secondary 28A35, 28C20
- DOI: https://doi.org/10.1090/S0002-9939-1991-1062827-X
- MathSciNet review: 1062827