The action of the Steenrod squares on the modular invariants of linear groups
HTML articles powered by AMS MathViewer
- by Nguyên H. V. Hung
- Proc. Amer. Math. Soc. 113 (1991), 1097-1104
- DOI: https://doi.org/10.1090/S0002-9939-1991-1064904-6
- PDF | Request permission
Abstract:
We compute the action of the Steenrod squares on the Dickson invariants of the group $G{L_n} = GL(n,{\mathbf {Z}}/2)$ and the Mùi invariants of the subgroup ${T_n}$ consisting of all upper triangular matrices with 1 on the main diagonal. Our method is very elementary. Roughly speaking, we read off the above action from the expansion of the Mùi invariants in terms of Dickson and Mùi invariants of fewer variables.References
- H. E. A. Campbell, Upper triangular invariants, Canad. Math. Bull. 28 (1985), no. 2, 243–248. MR 782784, DOI 10.4153/CMB-1985-030-2
- Leonard Eugene Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), no. 1, 75–98. MR 1500882, DOI 10.1090/S0002-9947-1911-1500882-4
- Huỳnh Mui, Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975), no. 3, 319–369. MR 422451
- Huỳnh Mùi, Dickson invariants and Milnor basis of the Steenrod algebra, Topology, theory and applications (Eger, 1983) Colloq. Math. Soc. János Bolyai, vol. 41, North-Holland, Amsterdam, 1985, pp. 345–355. MR 863917
- Ib Madsen, On the action of the Dyer-Lashof algebra in $H_{\ast }(G)$, Pacific J. Math. 60 (1975), no. 1, 235–275. MR 388392
- Ib Madsen and R. James Milgram, The classifying spaces for surgery and cobordism of manifolds, Annals of Mathematics Studies, No. 92, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979. MR 548575
- Benjamin Michael Mann, The cohomology of the symmetric groups, Trans. Amer. Math. Soc. 242 (1978), 157–184. MR 500961, DOI 10.1090/S0002-9947-1978-0500961-9
- Benjamin M. Mann and R. James Milgram, On the Chern classes of the regular representations of some finite groups, Proc. Edinburgh Math. Soc. (2) 25 (1982), no. 3, 259–268. MR 678549, DOI 10.1017/S0013091500016746
- Frederick R. Cohen, Thomas J. Lada, and J. Peter May, The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New York, 1976. MR 0436146
- John Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150–171. MR 99653, DOI 10.2307/1969932
- Nguyen Nam Hai and Nguyễn Hữu Việt Hưng, Steenrod operations on mod $2$ homology of the iterated loop space, Acta Math. Vietnam. 13 (1988), no. 2, 113–126 (1989). MR 1023710
- William M. Singer, The construction of certain algebras over the Steenrod algebra, J. Pure Appl. Algebra 11 (1977/78), no. 1-3, 53–59. MR 467746, DOI 10.1016/0022-4049(77)90039-1
- William M. Singer, The transfer in homological algebra, Math. Z. 202 (1989), no. 4, 493–523. MR 1022818, DOI 10.1007/BF01221587
- Larry Smith and R. M. Switzer, Realizability and nonrealizability of Dickson algebras as cohomology rings, Proc. Amer. Math. Soc. 89 (1983), no. 2, 303–313. MR 712642, DOI 10.1090/S0002-9939-1983-0712642-4
- N. E. Steenrod, Cohomology operations, Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962. Lectures by N. E. Steenrod written and revised by D. B. A. Epstein. MR 0145525
- Clarence Wilkerson, A primer on the Dickson invariants, Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982) Contemp. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1983, pp. 421–434. MR 711066, DOI 10.1090/conm/019/711066
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 1097-1104
- MSC: Primary 55S05
- DOI: https://doi.org/10.1090/S0002-9939-1991-1064904-6
- MathSciNet review: 1064904