A Polish topology for the closed subsets of a Polish space
HTML articles powered by AMS MathViewer
- by Gerald Beer
- Proc. Amer. Math. Soc. 113 (1991), 1123-1133
- DOI: https://doi.org/10.1090/S0002-9939-1991-1065940-6
- PDF | Request permission
Abstract:
Let $\left \langle {X,d} \right \rangle$ be a complete and separable metric space. The Wijsman topology on the nonempty closed subset $\operatorname {CL}\left ( X \right )$ of $X$ is the weakest topology on $\operatorname {CL}\left ( X \right )$ such that for each $x$ in $X$, the distance functional $A \to d\left ( {x,A} \right )$ is continuous on $\operatorname {CL}\left ( X \right )$. We show that this topology is Polish, and that the traditional extension of the topology to include the empty set among the closed sets is also Polish. We also compare the Borel class of a closed valued multifunction with its Borel class when viewed as a single-valued function into $\operatorname {CL}\left ( X \right )$, equipped with Wijsman topology.References
- H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 773850 H. Attouch, R. Lucchetti, and R. Wets, The topology of the $\rho$-Hausdorff distance, Ann. Mat. Pura Appl. (to appear).
- M. Baronti and P. L. Papini, Convergence of sequences of sets, Methods of functional analysis in approximation theory (Bombay, 1985) Internat. Schriftenreihe Numer. Math., vol. 76, Birkhäuser, Basel, 1986, pp. 135–155. MR 904685
- Gerald Beer, Metric spaces with nice closed balls and distance functions for closed sets, Bull. Austral. Math. Soc. 35 (1987), no. 1, 81–96. MR 875510, DOI 10.1017/S000497270001306X
- Gerald Beer, An embedding theorem for the Fell topology, Michigan Math. J. 35 (1988), no. 1, 3–9. MR 931935, DOI 10.1307/mmj/1029003677
- Gerald Beer, Support and distance functionals for convex sets, Numer. Funct. Anal. Optim. 10 (1989), no. 1-2, 15–36. MR 978800, DOI 10.1080/01630568908816288
- Gerald Beer, Conjugate convex functions and the epi-distance topology, Proc. Amer. Math. Soc. 108 (1990), no. 1, 117–126. MR 982400, DOI 10.1090/S0002-9939-1990-0982400-8
- Gerald Beer, Alojzy Lechicki, Sandro Levi, and Somashekhar Naimpally, Distance functionals and suprema of hyperspace topologies, Ann. Mat. Pura Appl. (4) 162 (1992), 367–381. MR 1199663, DOI 10.1007/BF01760016
- Jonathan M. Borwein and Simon Fitzpatrick, Mosco convergence and the Kadec property, Proc. Amer. Math. Soc. 106 (1989), no. 3, 843–851. MR 969313, DOI 10.1090/S0002-9939-1989-0969313-4
- C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. MR 0467310
- J. P. R. Christensen, Topology and Borel structure, North-Holland Mathematics Studies, Vol. 10, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974. Descriptive topology and set theory with applications to functional analysis and measure theory. MR 0348724 B. Cornet, Topologies sur les fermés d’un espace métrique, Cahiers de mathématiques de la décision #7309, Université de Paris Dauphine, 1973.
- Immacolata Del Prete and M. Beatrice Lignola, On convergence of closed-valued multifunctions, Boll. Un. Mat. Ital. B (6) 2 (1983), no. 3, 819–834 (English, with Italian summary). MR 737437
- Edward G. Effros, Convergence of closed subsets in a topological space, Proc. Amer. Math. Soc. 16 (1965), 929–931. MR 181983, DOI 10.1090/S0002-9939-1965-0181983-3
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- J. M. G. Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472–476. MR 139135, DOI 10.1090/S0002-9939-1962-0139135-6
- Sebastiano Francaviglia, Alojzy Lechicki, and Sandro Levi, Quasiuniformization of hyperspaces and convergence of nets of semicontinuous multifunctions, J. Math. Anal. Appl. 112 (1985), no. 2, 347–370. MR 813603, DOI 10.1016/0022-247X(85)90246-X
- Christian Hess, Loi de probabilité des ensembles aléatoires à valeurs fermées dans un espace métrique séparable, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 21, 883–886 (French, with English summary). MR 715327 —, Contributions à l’étude de la mesurabilité, de la loi de probabilité, et de la convergence des multifunctions, Thèse d’état, Montpellier, 1986.
- C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53–72. MR 367142, DOI 10.4064/fm-87-1-53-72
- James Keesling, Normality and properties related to compactness in hyperspaces, Proc. Amer. Math. Soc. 24 (1970), 760–766. MR 253292, DOI 10.1090/S0002-9939-1970-0253292-7
- Erwin Klein and Anthony C. Thompson, Theory of correspondences, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1984. Including applications to mathematical economics; A Wiley-Interscience Publication. MR 752692
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 397–403 (English, with Russian summary). MR 188994
- A. Lechicki and S. Levi, Wijsman convergence in the hyperspace of a metric space, Boll. Un. Mat. Ital. B (7) 1 (1987), no. 2, 439–451 (English, with Italian summary). MR 896334
- G. G. Lorentz, Approximation of functions, Holt, Rinehart and Winston, New York-Chicago, Ill.-Toronto, Ont., 1966. MR 0213785
- M. Matzeu, Su un tipo di continuità dell’operatore subdifferenziale, Boll. Un. Mat. Ital. B (5) 14 (1977), no. 2, 480–490 (Italian, with English summary). MR 0461235
- Robert A. McCoy and Ibula Ntantu, Topological properties of spaces of continuous functions, Lecture Notes in Mathematics, vol. 1315, Springer-Verlag, Berlin, 1988. MR 953314, DOI 10.1007/BFb0098389
- Ernest Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182. MR 42109, DOI 10.1090/S0002-9947-1951-0042109-4
- Umberto Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510–585. MR 298508, DOI 10.1016/0001-8708(69)90009-7
- S. A. Naimpally, Wijsman convergence for function spaces, Rend. Circ. Mat. Palermo (2) Suppl. 18 (1988), 333–358. Third National Conference on Topology (Italian) (Trieste, 1986). MR 958746
- K. R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. MR 0226684
- Gabriella Salinetti and Roger J.-B. Wets, On the convergence of sequences of convex sets in finite dimensions, SIAM Rev. 21 (1979), no. 1, 18–33. MR 516381, DOI 10.1137/1021002 Y. Sonntag, Convergence au sens de Mosco; theorie et applications à l’approximation des solutions d’inéquations, Thèse d’Etat. Université de Provence, Marseille, 1982.
- Makoto Tsukada, Convergence of best approximations in a smooth Banach space, J. Approx. Theory 40 (1984), no. 4, 301–309. MR 740641, DOI 10.1016/0021-9045(84)90003-0
- Daniel H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), no. 5, 859–903. MR 486391, DOI 10.1137/0315056
- R. A. Wijsman, Convergence of sequences of convex sets, cones and functions. II, Trans. Amer. Math. Soc. 123 (1966), 32–45. MR 196599, DOI 10.1090/S0002-9947-1966-0196599-8
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 1123-1133
- MSC: Primary 54B20; Secondary 54C35, 54C60, 54E50
- DOI: https://doi.org/10.1090/S0002-9939-1991-1065940-6
- MathSciNet review: 1065940