A NOTE ON THE CONNECTEDNESS PROBLEM FOR NEST ALGEBRAS

DAVID R. PITTS

(Communicated by Paul S. Muhly)

Abstract. It has been conjectured that a certain operator T belonging to the group \mathcal{F} of invertible elements of the algebra $\text{Alg} Z$ of doubly infinite upper-triangular bounded matrices lies outside the connected component of the identity in \mathcal{F}. In this note we show that T actually lies inside the connected component of the identity of \mathcal{F}.

Let T be the unit circle in the complex plane with normalized Lebesgue measure. For $1 < p < \infty$, let H^p be the usual Hardy space of all functions in $L^p(T)$ that have analytic extensions to the open unit disk D. Let $\mathcal{H} = L^2(T)$ and let $\mathcal{B}(\mathcal{H})$ be set of all bounded linear operators on \mathcal{H}. Let $W \in \mathcal{B}(\mathcal{H})$ be the shift operator: $(Wf)(e^{i\theta}) = e^{i\theta}f(e^{i\theta})$. In this paper, we consider the nest $\{W^nH^2 : n \in \mathbb{Z}\}$ of subspaces of $L^2(T)$, and its associated nest algebra,

$$\text{Alg} Z = \{T \in \mathcal{B}(\mathcal{H}) : TW^nH^2 \subseteq W^nH^2 \text{ for all } n \in \mathbb{Z}\}.$$

A question which has been unanswered for several years is the following:

Question. Is the group of invertible elements of the Banach algebra $\text{Alg} Z$ connected in the norm topology?

It is frequently conjectured that the answer to this question is no. The reason for conjecturing a negative answer is because of a strong analogy between nest algebras and analytic function theory. We refer the reader to the book by Davidson [1] for details and more background on this question.

For each $f \in L^\infty(T)$, let $M_f \in \mathcal{B}(\mathcal{H})$ be the multiplication operator,

$$M_f \phi = f \phi,$$

$\phi \in L^2(T)$.

Note that for $f \in H^\infty$, we have $M_f \in \text{Alg} Z$. Let a be a positive real number and set

$$h(z) = \frac{ai}{\pi} \log \left(\frac{1 + z}{1 - z} \right).$$

Received by the editors July 19, 1990.
1980 Mathematics Subject Classification (1985 Revision). Primary 47D25; Secondary 46B35.
Key words and phrases. Nest, nest algebra.
Research partially supported by NSF grant DMS-8702982 and by an NSF Mathematical Sciences Postdoctoral Fellowship.
Then h is a conformal map of the open unit disk onto the unbounded vertical strip $\{z \in \mathbb{C} : -a < \text{Re}(z) < a\}$.

If $f = \exp(h)$ then it is easy to see that both f and $1/f$ are H^∞ functions and moreover, that f is not the exponential of any H^∞ function. Therefore f cannot be connected to the constant function 1 via a norm continuous path within the group of invertible elements of the Banach algebra H^∞. For this reason, the operator M_f has been suggested as a possible example of an operator which cannot be connected to the identity via a norm continuous path inside the group of invertibles in $\text{Alg}Z$.

The purpose of this note is to show that in fact, M_f may be connected to the identity via a norm continuous path of invertible elements in $\text{Alg}Z$.

Before giving the proof we pause for some terminology and to make a few simple remarks.

Let \mathscr{A} be a unital Banach algebra with unit I. Say that an invertible element a of \mathscr{A} may be connected to the identity if there exists a norm continuous function $f: [0, 1] \to \mathscr{A}$ such that $f(0) = a$, $f(1) = I$, and $f(t)$ is an invertible element of \mathscr{A} for each t. The algebra \mathscr{A} has the connectedness property if every invertible element of \mathscr{A} may be connected to the identity. We use the term symmetry to describe a square root of the identity in a unital Banach algebra \mathscr{A}. Such elements have spectrum contained in the set $\{-1, 1\}$ and hence are connected to the identity. In fact, if $\gamma(t)$ is an arc in the complex plane connecting -1 to 1 which does not pass through the origin, then

$$
\sigma(t) = \frac{I + S}{2} + \gamma(t) \frac{I - S}{2}
$$

is a norm continuous path of invertible elements of \mathscr{A} which connects the symmetry S to the identity I.

The algebra

$$
\mathcal{D} = \text{Alg}Z \cap (\text{Alg}Z)^*
$$

is a von Neumann subalgebra of $\text{Alg}Z$ and since any von Neumann algebra has the connectedness property, we see that any invertible operator in \mathcal{D} can be connected to the identity in $\text{Alg}Z$.

Remark. Let α be a complex number of unit modulus and let $g \in L^\infty(T)$. Let $g_\alpha(z) = g(\alpha z)$, $z \in T$, and define a unitary operator $S_\alpha \in \mathcal{D}$ by

$$
S_\alpha e_n = \alpha^n e_n,
$$

where $e_n(e^{i\theta}) = e^{i n \theta}$ is the usual orthonormal basis for $L^2(T)$.

We then have

$$
S_\alpha M_g S_\alpha^* = M_{g_\alpha}.
$$

Note that by the above remarks, M_g and M_{g_α} belong to the same connectedness class of invertibles in $\text{Alg}Z$.

We now show that M_f can be connected to the identity. Note that $h(z) = -h(-z)$. It follows that we have

$$
f(z)f(-z) = 1 \quad \text{for all } z \in \mathcal{D}.
$$
If \(S = S_{-1} \), equation (2) yields,
\[
SM_fS = I.
\]
Hence both \(S \) and \(SM_f \) are symmetries in \(\text{Alg} \mathbb{Z} \) and
\[
M_f = S(SM_f).
\]
Therefore \(M_f \) can be connected to the identity in \(\text{Alg} \mathbb{Z} \). Moreover, equation (1) enables one to obtain an explicit path connecting \(M_f \) to the identity.

Question. Let \(m \) be a conformal mapping of the disk onto itself and set \(g = f \circ m \). Is \(M_g \) connected to the identity in \(\text{Alg} \mathbb{Z} \)? Note that the remark above shows that if \(m \) is a rotation, then this is the case.

Remark. Let \(R \) be any proper open subset of the complex plane that is simply connected and satisfies \(R = -R \). Then \(0 \in R \) and if \(h \) is any conformal map from the disk onto \(R \) with \(h(0) = 0 \), we have \(h(z) = -h(-z) \). (Indeed, the function \(g(z) = -h(-z) \) is also a conformal map of the disk onto \(R \). Since \(h(0) = g(0) \) and \(h'(0) = g'(0) \), the Riemann mapping theorem implies \(g = h \).) The argument given above now shows that if we assume that \(\{\text{Re}(z) : z \in \mathbb{R}\} \) is bounded and set \(f = \exp(h) \), then \(M_f \) is a product of two symmetries in \(\text{Alg} \mathbb{Z} \) and hence is connected to the identity in \(\text{Alg} \mathbb{Z} \).

References

Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska, 68588

Current address: Department of Mathematics, University of California, Los Angeles, California 90024

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use