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Abstract. Cooke [7] studied the problem of replacing homotopy actions by

topological actions. In this paper, we use Cooke's results to show that this can

always be done for a large class of spaces having few homotopy groups.

1. Introduction

The group of homeomorphisms of a space X has long been studied in the

context of covering spaces and Riemann surfaces. On the other hand, the group

£?(X) of homotopy classes of based homotopy self-equivalences of X is a much

more recent concept.

The first results on lf(X) to appear in print were in a 1958 paper of Barcus

and Barratt [4]. The discussion was an application of their results on homo-

topy classification. The first papers which dealt exclusively with the group of

self-equivalences appeared in 1964 and were due to Kahn [11], Shih [18], and

Arkowitz and Curjel [2, 3]. The first general results relating the group ¿?(X)

to the group of homeomorphisms of X appeared in a paper by Cooke in 1978

[7]. Cooke studied the following problem: a homotopy action of a group G on

a space X is a homomorphism a: G —► S'(X)f, where ^(X)y- is the group

of free homotopy self-equivalences of X. A homotopy action of G on X is

called a topological action if the image of a is a group of homeomorphisms of

X. When is a homotopy action of G on X equivalent to a topological action

of G on a homotopy equivalent space Y ?

Cooke showed that this problem has an affirmative solution if and only if

we can solve a certain lifting problem involving classifying spaces of function

spaces. He showed that the homotopy action of a free group on X is equivalent

to a topological action, and he gave an example of an action of 3f /2 on a space

X which is not equivalent to a topological action.

The approach in this paper is to try to apply the results of Cooke to various

specific cases. The difficulties in achieving this goal arise from the fact that very

little is known about the function spaces which are involved in Cooke's lifting

problem. Using the results of Yamanoshita [22, 23] and Siegel [19], however,

I have obtained a great deal of information in the cases where X is a simply
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connected space with only one or two nontrivial homotopy groups. Applying

Cooke's theorem to spaces with three or more homotopy groups would be very

difficult, because the structure of the group S'(X) and the space G(X) of self-

homotopy equivalences of X are not known in these cases.

In §2, we give the full statement of Cooke's theorem, and we define all of

the spaces and maps which occur in his lifting problem. In §3, we show that if

X = AT(n, zz) for zz > 1, and n is a finitely generated abelian group, then any

homotopy action of G on X is equivalent to a topological action. In §4, we

show that if X is a stable 2-stage space such that the group R in Shih's exact

sequence for l?(X) [18] is equal to 0, then any homotopy action of a group

G on X is equivalent to a topological action. Finally, §5 examines the 2-stage

approximation to Cooke's negative example. We show that any action of Z¡2

on such a space is equivalent to a topological action. This strongly suggests that

Cooke's example requires the space to have more than two homotopy groups

and that it is unlikely that his example can be simplified.

2. Cooke's theorem

A homotopy action of a group G on a space X is a homomorphism a from

G to the group £/(X) of free homotopy classes of homotopy equivalences of

X. Although Cooke's theorem holds for any space X having the homotopy

type of a CW-complex, I will make the additional assumption in all that follows

that X is 1-connected. In this case, ^j-(X) is isomorphic to the group %(X) of

base-point preserving homotopy equivalences of X, and I will denote both of

these groups by i?(X). The action a is called topological if the image of a is

a group of homeomorphisms. A homotopy action a of G on X is equivalent

to a homotopy action ß of G on Y if there exists homotopy equivalence

/: X —► Y such that the diagram

l?(X)

G. ■(f)

§?{Y)

is commutative. Here «?(/) is defined by [g] —> [fgf~x], where [g] £ f (X)

and /~ '  is any homotopy inverse for /.

Let G(X) denote the space of self-homotopy equivalences of X. It is an

associative //-space satisfying 7to(G(X)) = f(X). Let Gi(X) be the com-

ponent of the identity of G(X). There is an exact sequence of //-spaces

Gi(X) —> G(X) —► f(X) where the first map is inclusion and the second is

the projection map p. The map p induces a map Bp:Bo(x) —» K(&"(X), 1)

of classifying spaces with fiber homotopy equivalent to Bcx(x) ■

Given a homotopy action a , we have the following lifting problem:

^ -*BG(X)

^ ÍBp
K(G, if   Ba   >K(g(X), 1)

Theorem 1 (Cooke). The homotopy action a is equivalent to a topological action

of G on some space Y if and only if the lifting problem above has an affirmative

solution.
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Cooke gives two specific examples. First of all, he uses a telescope construc-

tion to show that a is equivalent to a topological action if G is a free group.

So if g is a self-homotopy equivalence of X of infinite order, X can be de-

formed so that the image of g under ë?(f) is homotopic to a homeomorphism

of the new space. Cooke also shows that his theorem is nontrivial by exhibiting

an action of Z¡2 on the space X = (Sm U2a e") V Sf"1 V S^~l which is not

equivalent to a topological action. Here m > 3 and a denotes an element in

the 2-primary component of nn-\(Sm), such that the order of a is divisible

by 4.

3. Homotopy actions on a space K(II, zz)

We now turn to the problem of whether a homotopy action of a group G on

a space X is equivalent to a topological action when X has only one or two

homotopy groups. If X is an Eilenberg-Mac Lane space, we will show that the

homotopy action of G on X is equivalent to a topological action. If X has

two nontrivial homotopy groups, we will show that a large class of such spaces

does indeed satisfy Cooke's condition.

Theorem 2. Let X - K(H, n), where n > 1 and U is a finitely generated

abelian group. Then the homotopy action of any group G on X is equivalent to

a topological action.

Proof. Thom [21 ] proved that G(X) has the weak homotopy type of AT(n, zz) x

Autn. By Proposition 2 of Yamanoshita [23], since K(îl, zz) is an //-space,

G(X) has the weak homotopy type of AT(II, zz) x Gn(X), where G0(X) is the

subspace of G(X) consisting of based homotopy equivalences. A weak homo-

topy equivalence is given by tp: K(I1, n) x Gn(X) -» G(X), where tp(x, g)(z) =

x • g(z) for x, z £ X , g £ G0(X).

Now 7r„(G(X)) « nn(K(U,n))®n„(G0(X)) « n © tc„(G0(X)) « n. So

nn(G0(X)) = 0. Since nt(G(X)) « 7n(K(U, n)) © zr,(G0(X)) = m(G0(X)) for
i ¿ n, we have that 7ro(G0(X)) = Autn, and 7r,(G0(X)) = 0 for i > 0.

We define a map tp:G0(X) —► Autn as follows: if g £ Gq(X) , let tp(g)

be the element of Autn defined by g#:nn(X) —> n„(X). tp is obviously

multiplicative. I claim that tp also induces a bijective correspondence between

7To(G0(X)) and Autn. Suppose <p(g\) = 4>(gf). Then gx# = g2# on n„(X),
and hence on all homotopy groups of X = K(T1, n). Thus g\ is homotopic

to g2, and they lie in the same component of Go(X). So tp is one-to-one.

Similarly, if gi, g2 £ Gq(X) are homotopic, then g\# — g2#: nn(X) —» n„(X).

So tp is well defined. Finally, let h £ Aut n. Then there is a homotopy class

of maps /:AT(n, n) -* K(l~l, n) such that f#:U -»• n is equal to /z^Since X

is connected, there is a g £ Gn(X) with g homotopic to f. Thus tj> is onto.

So (j) is a weak homotopy equivalence which is multiplicative.

Since n is finitely generated, Kahn [12] showed that Gn(X) is a CW-

complex. So tf> is in fact a multiplicative homotopy equivalence. So BGq(X)

is homotopy equivalent to 5(Autn) = AT(Autn, 1).

Now let p: G(X) -» g(X) and p': G0(X) -» g'(X) be projections. As
f(X) = Autn, and since Go(X) is homotopy equivalent to Autn, we can

write p': Autn —» Autn and p' can be taken to be the identity. Furthermore,

if i: Gfj(X) —> G(X) is inclusion, we have that p o i = p'. By Proposition 3.2
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of Dold and Lashof [9] we have that Bp o Bi = Bp'. So we have the following
commutative diagram for the homotopy action a: G —> l?(X) :

K(AutlA, 1) -JL+BG{X)

V^^ I Bp
K(G, 1) —-—► A:(Autn, 1)

Note that Bp' is the identity on AfiAutn, 1) since we take p':Autn —►
Aut n to be the identity.

Let y/:K(G, 1) — BG(X) be defined by y/ = Bio(Bp')~xoBa . Then Bpoxp =

Bp o Bi o (Bp')~x o Ba = Bp' o (Bp')~x o Ba = idje(AlItn,i) ° Ba = Ba . So (¿/

is a lift. Thus any homotopy action of a group G on X is equivalent to a

topological action.

Note that in general, the above argument shows that if we have a lift to

Bg0(X) > we automatically have a lift to BG(X) ■ We will use this fact in the next

section.

4. Homotopy actions on spaces

with two nontrivial homotopy groups

Now consider the case of a space X having a 2-stage Postnikov system.

F = K(H\,n\)—-->X   -> *
p I I

y = A:(no,zz0) -L jqiL.,«, +1)

We assume that «i > zz0 > 1 and that ni, YIq are finitely generated abelian

groups. / 6 H"'+x   (K(U0, zz0) ; n,) is the zc-invariant.

To compute S'(X), we can use the following exact sequence of Shih [ 18] and

Nomura [15]:

i^//"'(A;(no,zzo);n,)^r(x)^/v^ 1.

R is the subgroup of (Autno x Autni) consisting of pairs (go, gi) such
that go*:Hn*+x(K(n0, n0); IIi) -» Hn'+x(K(Tlo, n0); n,) is the map on coho-

mology induced by go, g\# is the coefficient automorphism induced by g\,

and go * (I) = gi#(0 • Nomura defines the maps in the exact sequence as fol-

lows: we have a map í:á?(X) —» (Autno x Autni) where [f] £ l?(X) is sent

to fn0# x A,# and fn¡#:nn¡(X) -* nn¡(X) for z = 0, 1 . Nomura shows that R

is the image of f and that the kernel is H"x(K(Ylo, no); fl\).
Yamanoshita [22] showed that

Hl-Bfj

G0(x)«/?x//«'(A:(no,zzo);n,)x ' [ A:(//"'-'(A:(no,zzo);ni),z).
CO x-*-

(=1

We use Yamanoshita [22] and the fact that for simply connected X, the

group of free self-equivalences is isomorphic to the group of based self-equiva-

lences to obtain the following result:

Proposition 3. (a) ni(BGo{X)) « %(X).

(b) JTf(*Gb(*)) « H^-+x(K(Uo, no); n,) for 1 < i < n, + 1.

(c) 7ii(BGo{X)) = 0fori>nl + l.
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Although we can determine the homotopy groups of BGo(X), we do not in

general know its homotopy type. The reason for this is that the weak homotopy

equivalence for Go(X) is not usually multiplicative, so it does not uniquely

determine the structure of the classifying space BG^X) ■ We can, however, de-

termine the structure of BGaiX) when X is "stable" (i.e., n{ <2zz0-3) by using

the following result of Siegel [19]: Let B+(X) be the classifying space in the

sense of Stasheff [20] and Allaud [ 1 ] for fibrations with fiber X, having cross

sections. Then B+(X) is the base of a fibration with fiber Go(X) and con-

tractible total space. So it is homotopy equivalent to BGa(X), since our spaces

have the homotopy type of CW-complexes [12]. We will denote both spaces by

BG0(X) ■

Let K - L0(AT(n0, zz0), AT(ni, zz¡ + 1) ; 0), where L0(A, B ; 0) is the space
of all pointed maps from A to B which are homotopic to a given constant map.

According to Siegel, we can construct a fibration over K with cross section and

fiber X, such that the classifying map k: K —► BGa(X^ induces an isomorphism

k#:7ij(K) -» n,(BGo(XA for i > 1 . (Although Siegel does not explicitly state

that AT is a space of pointed maps, this fact is obvious, both from the context

and by comparison with the results of Yamanoshita [22].)

Thom [21] observed that AT  is a product of Eilenberg-Mac Lane spaces

and proved that n¡(K) « //'"-'+1    (AT(n0, zz0) ; n,), for  z / zz, + 1.   So
we have recovered our earlier result about the higher homotopy groups of

BGa(X).   Moreover, Siegel gave the following:  up to homotopy, the sequence
k

of maps K —► BGa(X) -* K(R, 1) is a fibration, where R is the subgroup of

Aut no x Autn)  in Shih's exact sequence. The action of R on n¡(K) is the

restriction of the usual action of Aut n0x Autni on Hni~'+X   (AT(n0, no); üi).

Theorem 4. If X is a simply connected space with a stable 2-stage Postnikov

system (i.e., «i < 2zzo - 3), and R = 0, then the fibration Bp:BG^X) —>
K(i'(X), 1) has a section. Hence any homotopy action of a group G on X

is equivalent to a topological action.

Proof. If R — 0, Siegel [19] reduces to a fibration K —> BGo(x) ~* * where

K = Lo(K(U0, no), K(Ylx, n\ + 1);0) as before. Since K and BGa(X) are
both CW-complexes by [12], they are homotopy equivalent. Since AT is a prod-

uct of Eilenberg-Mac Lane spaces, so is Bq^X) • Now f(X) = ni(BGo(-xA.

So AT(f (X), 1) is a factor in BGo(X) and the map Bp is projection by the

construction. So the fibration BGo(X) —> K(%(X), 1) is trivial, and it has a

section.

We will now give some specific examples of stable 2-stage spaces X, for

which R = 0.

Proposition 5. If Yl\ = Z¡2  and Xlo  is cyclic, then R = 0  if and only if

Yl0 = Z/2.

Proof. If n0 = Z/2, then R is contained in (Aut^/2 x Aut.272) = 0, so
/? = 0.

Suppose n0 ¿ Z/2. Let i be the generator of Hn°(K(Ylo, n0) ; Z/2). Let
/ ë Hn^+x(K(Ylo, n0); Z/2) be the k-invariant. Then by Serre [17], / = 0 or

it is a sum of elements of the form Sq/(z).   If / = 0, then R = (Autnox
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Aut.272) = Autn0 t¿ 0. Suppose / / 0. Since n0 / Z/2, Autn0 contains
the automorphism -1. Now z'(-l) = 1 = z'(l). So -1 fixes i, and R ^ 0.

Theorem 6. Let Xl\ —Z/2 and no be a finitely generated abelian group. Then

if R = 0, no is a Z/2 vector space.

Proof. Let no = Gi © • • • © Gk where the G, are cyclic. Then

/e//"'+1(A:(no,Ko);JZ72),

which is a Z/2 vector space.

Suppose G, t¿ Z/2 for some i with 1 < i < k. Then let tp¡ be the
automorphism of no which fixes all elements of Gj for i ± j, and sends

(0, ... ,0, 1,0, ... ,0) e G, to (0, ... ,0, -1,0, ... , 0). Since any Â> in-
variant / is contained in a cohomology group with Z/2 coefficients, we have

that cpi fixes /, and R cannot be 0.

For our next theorem, we make the following comments: let no be a Z/2

vector space with zc summands, and i\, ... , ik be the generators of

Hn^(K(Ylo, no) ; Z/2) = ®*=1 H"°(K(Z/2, n0) ; Z/2). Autïl0 consists of
the invertible k x k matrices with coefficients in Z/2 . Now a matrix fixes z,

if and only if it sends the basis element (0, ... , 0, 1, 0, ... , 0) with 1 in the
zth place to any element of no with 1 in the z'th place, and it sends any other

basis element to an element of no with 0 in the z'th place. So the only matrix

which fixes every z, is the identity matrix. By assumption on dimensions, the

only nonzero terms in Hni+x(K(Ilo, no); Z/2) are Z/2 vector spaces gener-

ated by elements Sq/(z'¡). So R = 0 if the zV-invariant / is a sum of Steenrod

squares involving every z,.

Suppose i| does not figure into / for some |. Then / is fixed by any

invertible matrix A, with A,j = 1, A¡j = 0 where i ^ j, | and the |th

row is arbitrary. In order for A to be invertible, there are 2k - (k - 1) - 1

possibilities for the |th row of A . So in particular, / is fixed by some matrix

other than the identity, and R / 0. So we have proved the following:

Theorem 7. Let X be as before. Suppose Yl\ = Z/2 and no is a finitely-

generated abelian group. Then R = 0 ifandonlyifYlo = Z/2®---®Z/2 and
the k-invariant I £ Hn'+x(K(Uo, n0) ; Z/2) is a sum of Steenrod squares of all

of the generators i\, ... , ik of //"°(AT(n0, zz0) ; Z/2). By Cooke's theorem,
any homotopy action of a group G on X is equivalent to a topological action.

We now examine the case where %\ « Zfp for an odd prime p .

Theorem 8. Let YIq be a finitely-generated abelian group, and let ni « Z/p

for an odd prime p . Then R / 0.

Proof. Case 1. n0 is a Z/2 vector space. Then / £ H"'+x(K(Ilo, n0) ; Z/p) =

0, so R = (Autn0 x AutZ/p) f 0 .
Case 2. Let no = Gi © • • • © Gk where G, is cyclic. Let z'i, ... , im be the

generators of Hn°(K(Ylo, no); Z/p) » (Z/p)m where G,, ... , Gm are the

summands whose orders are powers of p. Let ip £ Aut no take any basis ele-

ment (0, ... , 0, 1, 0, ... , 0) of (Z/p)m to (0, ... , 0, -1, 0, ... , 0). Now
-1 £ AutZ/p , and for I < i < m , -Ui, = i¡ o \¡j . Now if 1^0, then / is
a sum of Steenrod p-powers of the z, [5, 6]. So -1#(/) = <//*(/) for all i. So

(ip, -l)£R, and R¿0.
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5.  2-STAGE APPROXIMATION TO COOKE'S NEGATIVE EXAMPLE

Recall that Cooke gives an example of a homotopy action of Z/2 on a

space X which is not equivalent to a topological action. The space X is

defined as follows: let zzz > 3 and let a denote any element in the 2-primary

component of nn-\(Sm), such that the order of a is divisible by 4. Then

we let X = (Sm U2q <?") V Sx~x V S"~x . Since X has infinitely many nonzero

homotopy groups, it is reasonable to ask whether there is a simpler example.

In particular, is there an example of a homotopy action of a group G on a

space X having only finitely many nonzero homotopy groups? The previous

section shows the difficulty in answering this question, even when X has only

two nontrivial homotopy groups. In this section, however, we will show that for

the 2-stage approximation Y to one of Cooke's spaces with zz - 1 < 2m -1, any

homotopy action of Z/2 on Y is equivalent to a topological action. Because

of this fact, it seems unlikely that a simpler negative example can be found.

Let X = (5"" U2a en) V S?-1 V S?"1 . In the stable range, nm(Sm) « Z,

nm+\(Sm) « Z/2. So let Y be the following 2-stage space:

AT(^72,m+l)—Í->Y —->*
pi I

K(Z, m) —Í—> K(Z/2, m+ 2)

Theorem 9. Any homotopy action of Z/2 on Y, where Y = K(Z, m) x
K(Z/2, m + 1) or Y is the 2-stage approximation to X is equivalent to a

topological action. (Note that in the latter case, Y is the 2-stage approximation

to the sphere Sm.)

Proof. The zc-invariant / is an element of Hm+2(K(Z, m) ; Z/2). So / = 0

or / = Sq2(z") where z is the generator of Hm(K(Z, m) ; Z/2) « Z/2 .

Case 1. / = 0. Then Y = K(Z, m) x K(Z/2, m + 1). According to
Serre [17], Hm+X(K(Z, m);Z/2) = 0. So Shih's exact sequence gives that

g(Y) « R « Aut^ x AutJT/2 « Z/2.
Now let a:Z/2 —► i?(Y) be a homotopy action. Let g be a representative

of the image of 1 £ Z/2 under a. Then g#:nm(Y) —> nm(Y) is not the

identity, but g2 is the identity. So g# gives rise to a function /: K(Z, m) —►

K(Z, m) such that / is not homotopic to the identity, but f2 is homotopic

to the identity. So we have a homotopy action of Z/2 on K(Z, m). This

action is equivalent to a topological action of Z/2 on a homotopy equivalent

K(Z, m) by our earlier result. So let / be the image of / under this homotopy

equivalence. Then / is a homeomorphism of order 2. So (/, idK^/2>m+iA

is a homeomorphism of Y = K(Z, m) x K(Z/2, m + 1) of order 2. So the

action of Z/2 on Y is equivalent to a topological action.

Case 2. / = Sq2(z). Once again, Shih's exact sequence gives that &(Y) = R.

Now R is the set of all tp £ Aut Z which fix i. But Aut .2" consists only of

the identity and multiplication by -1. But since i £ Hm(K(Z, m); Z/2),

z'(-l) = 1 = z'(l). So any automorphism of Z fixes i, and R = Z/2 = £?(Y).

Now we claim that y is a topological group. To see this, we will first show

that y is a space of loops. According to Copeland [8], X has the homotopy

type of a space of loops if and only if / £ Hm+2(K(Z, m) ; Z/2) is the sus-

pension of an element /' e Hm+3(K(Z ,m+l); Z/2).
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Now / = Sq2(z) where i is the generator of Hm(K(Z, m);Z/2). Let

/' = Sq2(z') where i' is the generator of Hm+X(K(Z, m + I); Z/2). Let

l:Hm+x(K(Z, m + I); Z/2) -* Hm(K(Z, m);Z/2) be the suspension ho-

momorphism. Then X is an isomorphism, so i = Zz'. Since Sq2 commutes

with suspension, we have that / is the suspension of /'. So Y — Q.Z where Z

is the following space:

K(Z/2 ,m + 2) —-> Z -> *
p'i I

K(Z, m+ 1)      ''    )K(Z/2, m+ 3)

Now Z has the homotopy type of a countable, connected simplicial complex.

So by Milnor [ 13], there is a universal bundle over Z whose fiber is the topolog-

ical group constructed as follows: henceforth, we suppose that Z is a simplicial

complex. Let G be the space of sequences [v0, zn-\, ... , z\,Vo\ topologized

as a subset of Z"+1 with Vo a fixed vertex of Z and z,_points of Z such that

each pair z,, zi+i lies in a common simplex of Z . Let G be the quotient space

G/ ~ where [v0, zn-{, ... , z¿, ... , zx ,v0] ~ [v0, z„_i, ... , z¡, ... , z{, v0]

if z, = z,_i or z,_i = z,+i . According to Milnor, G is a topological group

which is a countable CW-complex, and G is the fiber of a universal bundle over

Z . Let y/:G —> Ü.Z send [vq, zn_\, ... , z\, vq] to the loop on Z formed

by taking the path on Z which connects z, to zJ+i by a linear path. Then

since G is the fiber of a universal bundle over Z , y/ induces isomorphisms on

homotopy groups. Since Z is a CW-complex, so is ÍXZ by Milnor [14]. So ip

is a homotopy equivalence. Hence, Y has the homotopy type of a topological

group.

Lemma 10. Let G be a topological group. Then tp:g —> g_1 z's multiplication

by -I on homotopy groups.

Proof. Let ¿u be the multiplication in G. Then /¿(</>, idc)(g) = p(g~x , g) = 1 .

So /z(</>, idg) is null-homotopic. Let C G n„(G), and (tp, idc)#(C) = (£, C) €
7î„(G x G) = 7r„(G) © nn(G), where £ = (/>#(£)• Then M<t>, idG)#(C) =
/*#((!;, C) = 0 c nn(G). But we claim p#(c¡, Q = ¿¡ + Ç. To see this, note

that p(g, I) = g = p(l, g). So if z'i#, i2# are the inclusions of nn(G) into

7t„(GxG) = nn(G)®nn(G), then ¿z#(£, C) = /t#ih#iZ), ¡2#(Q) = MU#H), 0) +
/z#(0, z'2#(0) = ^ + C • Thus, cf = 0#(C) = -C • So the lemma is proved.

Returning to Theorem 9, recall that nm(Y) « nm(G) &Z. So tp#: nm(G) —>

nm(G) is multiplication by -1, which is not the identity. So tp is a home-

omorphism on G of order 2, which is not homotopic to the identity. So the

homotopy action of Z/2 on Y is equivalent to a topological action of Z/2

on the homotopy equivalent space G, and Theorem 9 is proved.

We note that for the proof of Theorem 9, we need that ^(Y) — Z/2,

so that the inverse map is in the only class of order 2. If y is a 2-stage

space with 7tm(y) = Z, nm+r(Y) = Z/2, and r > 1, then by Serre [17],
Hm+r(K(Z, r); Z/2) is a nontrivial 2'/2 vector space, so Shih's exact se-

quence gives that &(Y) has more than one element of order 2 and the argu-

ment of Theorem 9 fails in this case. If such a y is stable, however, the proof

of Theorem 9 shows that there is a particular action of Z/2 on Y which is

equivalent to a topological action.
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To show that we cannot use the preceding argument for the spaces in Cooke's

negative example, I note the following:

Theorem 11. Let X = (Sml)2ae")vS"~x \ZS"~X as in Cooke's negative example.

Then X does not have the homotopy type of an H-space.

Proof. According to Hopf [ 10], if X has the homotopy type of an //-space, then

the rational cohomology ring of X is an exterior algebra on odd-dimensional
generators. Now Hm(X; Q) = Q = Hn(X; Q), Hn~x(X; Q) = Q © Q, and

all other cohomology groups in positive dimensions vanish. Since m < n - 1,

H*(X ; Q) has generators in dimensions zz - 1 and zz. Since one of these must

be even, we have a contradiction. So X does not have the homotopy type of

an //-space.

In conclusion, the author has proved some additional results relating to

Cooke's problem in his thesis [16]. He shows that if X is a simply connected

stable 2-stage CW-complex, BGo{X) and BGiX) are nilpotent spaces, and the

fibration BGo{-X) -» K(W(X), 1) does not have a section, then the fibration

Bg(X) -* K(W(X), 1) does not have a section. In this case, the homotopy action

of B'(X) on X by a: S?(X) —» B'(X), where a is the identity, is not equivalent

to a topological action. He also proves results giving conditions for the action

a of the group /v"i x N2 on a space X to be equivalent to a topological action

when the restrictions of a to N\ and N2 are equivalent to topological actions.
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